Dataset para entrenamiento de yoloV3 para 4 clases

Overview

Deteccion de objetos en video

Este repo basado en el proyecto PyTorch YOLOv3 para correr detección de objetos sobre video. Construí sobre este proyecto para añadir la capacidad de detectar objetos en un stream de video en vivo.

YOLO (You Only Look Once o Tú Solo Ves Una Vez, pero TSVUV no suena tan bien) es un modelo el cual esta optimizado para generar detecciones de elementos a una velocidad muy alta, es por eso que es una muy buena opción para usarlo en video. Tanto el entrenamiento como predicciones con este modelo se ven beneficiadas si se cumple con una computadora que tenga una GPU NVIDIA.

Por default este modelo esta pre entrenado para detecta 80 distintos objetos, la lista de estos se encuentra en el archivo data/coco.names

Los pasos a seguir para poder correr detección de objetos en el video de una webcam son los siguientes (La creación del ambiente asume que Anaconda esta instalado en la computadora):

Crear ambiente

Para tener en orden nuestras paqueterias de python primero vamos a crear un ambiente llamado "deteccionobj" el cual tiene la version 3.6 de python

conda create -n deteccionobj python=3.6

Activamos el ambiente deteccionobj para asegurarnos que estemos en el ambiente correcto al momento de hacer la instalación de todas las paqueterias necesarias

source activate deteccionobj

Instalación de las paqueterias

Estando dentro de nuestro ambiente vamos a instalar todas las paqueterias necesarias para correr nuestro detector de objetos en video, la lista de los paqueter y versiones a instalar están dentro del archivo requirements.txt por lo cual instalaremos haciendo referencia a ese archivo

pip install -r requirements.txt

Descargar los pesos del modelo entrenado

Para poder correr el modelo de yolo tendremos que descargar los pesos de la red neuronal, los pesos son los valores que tienen todas las conexiones entre las neuronas de la red neuronal de YOLO, este tipo de modelos son computacionalmente muy pesados de entrenar desde cero por lo cual descargar el modelo pre entrenado es una buena opción.

bash weights/download_weights.sh

Movemos los pesos descargados a la carpeta llamada weights

mv yolov3.weights weights/

Correr el detector de objetos en video

Por ultimo corremos este comando el cual activa la camara web para poder hacer deteccion de video sobre un video "en vivo"

python deteccion_video.py

Modificaciones

Si en vez de correr detección de objetos sobre la webcam lo que quieres es correr el modelo sobre un video que ya fue pre grabado tienes que cambiar el comando para correr el codigo a:

python deteccion_video.py --webcam 0 --directorio_video <directorio_al_video.mp4>

Entrenamiento

Ahora, si lo que quieres es entrenar un modelo con las clases que tu quieras y no utilizar las 80 clases que vienen por default podemos entrenar nuestro propio modelo. Estos son los pasos que deberás seguir:

Primero deberás etiquetar las imagenes con el formato VOC, aqui tengo un video explicando como hacer este etiquetado:

Desde la carpeta config correremos el archivo create_custom_model para generar un archivo .cfg el cual contiene información sobre la red neuronal para correr las detecciones

cd config
bash create_custom_model.sh <Numero_de_clases_a_detectar>
cd ..

Descargamos la estructura de pesos de YOLO para poder hacer transfer learning sobre esos pesos

cd weights
bash download_darknet.sh
cd ..

Poner las imagenes y archivos de metadata en las carpetar necesarias

Las imagenes etiquetadas tienen que estar en el directorio data/custom/images mientras que las etiquetas/metadata de las imagenes tienen que estar en data/custom/labels. Por cada imagen.jpg debe de existir un imagen.txt (metadata con el mismo nombre de la imagen)

El archivo data/custom/classes.names debe contener el nombre de las clases, como fueron etiquetadas, un renglon por clase.

Los archivos data/custom/valid.txt y data/custom/train.txt deben contener la dirección donde se encuentran cada una de las imagenes. Estos se pueden generar con el siguiente comando (estando las imagenes ya dentro de data/custom/images)

python split_train_val.py

Entrenar

python train.py --model_def config/yolov3-custom.cfg --data_config config/custom.data --pretrained_weights weights/darknet53.conv.74 --batch_size 2

Correr deteccion de objetos en video con nuestras clases

python deteccion_video.py --model_def config/yolov3-custom.cfg --checkpoint_model checkpoints/yolov3_ckpt_99.pth --class_path data/custom/classes.names  --weights_path checkpoints/yolov3_ckpt_99.pth  --conf_thres 0.85
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

A Collection of Papers and Codes for ICCV2021 Low Level Vision and Image Generation

196 Jan 05, 2023
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022
A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

443 Jan 06, 2023
Exploring the link between uncertainty estimates obtained via "exact" Bayesian inference and out-of-distribution (OOD) detection.

Uncertainty-based OOD detection Exploring the link between uncertainty estimates obtained by "exact" Bayesian inference and out-of-distribution (OOD)

Christian Henning 1 Nov 05, 2022
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O

Denys Rozumnyi 139 Dec 26, 2022
(SIGIR2020) “Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback’’

Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback About This repository accompanies the real-world experiments conducted i

yuta-saito 19 Dec 01, 2022
This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons

Adversarial poison generation and evaluation. This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong

31 Nov 01, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
phylotorch-bito is a package providing an interface to BITO for phylotorch

phylotorch-bito phylotorch-bito is a package providing an interface to BITO for phylotorch Dependencies phylotorch BITO Installation Get the source co

Mathieu Fourment 2 Sep 01, 2022
This tutorial repository is to introduce the functionality of KGTK to first-time users

Welcome to the KGTK notebook tutorial The goal of this tutorial repository is to introduce the functionality of KGTK to first-time users. The Knowledg

USC ISI I2 58 Dec 21, 2022
Code for project: "Learning to Minimize Remainder in Supervised Learning".

Learning to Minimize Remainder in Supervised Learning Code for project: "Learning to Minimize Remainder in Supervised Learning". Requirements and Envi

Yan Luo 0 Jul 18, 2021
Code for the paper "Functional Regularization for Reinforcement Learning via Learned Fourier Features"

Reinforcement Learning with Learned Fourier Features State-space Soft Actor-Critic Experiments Move to the state-SAC-LFF repository. cd state-SAC-LFF

Alex Li 10 Nov 11, 2022
PyTorch implementation of VAGAN: Visual Feature Attribution Using Wasserstein GANs

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 93 Aug 17, 2022
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 04, 2023
In Search of Probeable Generalization Measures

In Search of Probeable Generalization Measures Exciting News! In Search of Probeable Generalization Measures has been accepted to the International Co

Mahdi S. Hosseini 6 Sep 11, 2022
Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022

PGNet Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022, CVPR 2022 (arXiv 2204.05041) Abstract Recent salient objec

CVTEAM 109 Dec 05, 2022
Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows

Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows This is the official implementation of the ICCV 2021 Paper "Probabilistic Mono

62 Nov 23, 2022
Code for the paper Learning the Predictability of the Future

Learning the Predictability of the Future Code from the paper Learning the Predictability of the Future. Website of the project in hyperfuture.cs.colu

Computer Vision Lab at Columbia University 139 Nov 18, 2022
Learnable Boundary Guided Adversarial Training (ICCV2021)

Learnable Boundary Guided Adversarial Training This repository contains the implementation code for the ICCV2021 paper: Learnable Boundary Guided Adve

DV Lab 27 Sep 25, 2022