DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Overview

Evaluation, Training, Demo, and Inference of DeFMO

DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Denys Rozumnyi, Martin R. Oswald, Vittorio Ferrari, Jiri Matas, Marc Pollefeys

Qualitative results: https://www.youtube.com/watch?v=pmAynZvaaQ4

Pre-trained models

The pre-trained DeFMO model as reported in the paper is available here: https://polybox.ethz.ch/index.php/s/M06QR8jHog9GAcF. Put them into ./saved_models sub-folder.

Inference

For generating video temporal super-resolution:

python run.py --video example/falling_pen.avi

For generating temporal super-resolution of a single frame with the given background:

python run.py --im example/im.png --bgr example/bgr.png

Evaluation

After downloading the pre-trained models and downloading the evaluation datasets, you can run

python eval_dataset.py

Synthetic dataset generation

For the dataset generation, please download:

Then, insert your paths in renderer/settings.py file. To generate the dataset, run in renderer sub-folder:

python run_render.py

Note that the full training dataset with 50 object categories, 1000 objects per category, and 24 timestamps takes up to 1 TB of storage memory. Due to this and also the ShapeNet licence, we cannot make the pre-generated dataset public - please generate it by yourself using the steps above.

Training

Set up all paths in main_settings.py and run

python train.py

Evaluation on real-world datasets

All evaluation datasets can be found at http://cmp.felk.cvut.cz/fmo/. We provide a download_datasets.sh script to download the Falling Objects, the TbD-3D, and the TbD datasets.

Reference

If you use this repository, please cite the following publication ( https://arxiv.org/abs/2012.00595 ):

@inproceedings{defmo,
  author = {Denys Rozumnyi and Martin R. Oswald and Vittorio Ferrari and Jiri Matas and Marc Pollefeys},
  title = {DeFMO: Deblurring and Shape Recovery of Fast Moving Objects},
  booktitle = {CVPR},
  address = {Nashville, Tennessee, USA},
  month = jun,
  year = {2021}
}
Comments
  • Question about training set

    Question about training set

    Hi, thanks for your generous sharing.

    I have a question about training set generating in your work. I generated a training set following your codes. Its size is about 100GB, far less than 1TB. Is there anything wrong?

    Thanks.

    opened by fan-hd 11
  • Apply your model on custom longer video clips

    Apply your model on custom longer video clips

    Hi thank you for releasing your code,

    Can your model be applied on custom videos about high speed train crossing? Video clips last from 3 to 10 seconds, my idea was to preprocess them with your code in order to keep the same frame rate and have a better video quality for later object detection. This is an example frame from original video clip:

    vlcsnap-2021-05-25-15h27m32s030

    I tried to run your code on a video about 6 seconds and the result was a longer video (about 13min) with a lower level of detail, probably I'm doing something wrong. This is an example frame from output video clip:

    vlcsnap-2021-05-25-15h26m22s237

    How can I correctly reconstruct the quality of single frames usin all the information contained in the video?

    opened by fabiozappo 4
  • Question about comparison with Jin et al.'s work (CVPR2018)

    Question about comparison with Jin et al.'s work (CVPR2018)

    Hi, thank you for your interesting work! I have a question about the comparison of methods in your work. When making comparisons, did you retrain Jin et al.'s model ("Learning to Extract a Video Sequence from a Single Motion-Blurred Image" from CVPR 2018), or did you just use their pre-trained checkpoints? I couldn't find the training code on their github page.

    opened by zzh-tech 2
  • Padding in Time-Consistency Loss

    Padding in Time-Consistency Loss

    Hi,

    Congratulations!

    I found that "padding = tuple(side // 10 for side in sh[:2]) + (0,)" for normalized cross-correlation. Does it only implement padding to the height axis, since the padding tuple will be of size (4//10, H//10, 0)?

    Thanks a lot.

    opened by JLiu-Edinburgh 1
  • run on google colab!

    run on google colab!

    I'm confused! and need to run the code on google colab or more explanation about how to implement that code in vscode or something else .if it know someone please help me

    opened by ganikas 3
Releases(v1.0)
Owner
Denys Rozumnyi
PhD student at ETH Zurich.
Denys Rozumnyi
Tensors and Dynamic neural networks in Python with strong GPU acceleration

PyTorch is a Python package that provides two high-level features: Tensor computation (like NumPy) with strong GPU acceleration Deep neural networks b

61.4k Jan 04, 2023
CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)

CLIP (Contrastive Language–Image Pre-training) Experiments (Evaluation) Model Dataset Acc (%) ViT-B/32 (Paper) CIFAR100 65.1 ViT-B/32 (Our) CIFAR100 6

Myeongjun Kim 52 Jan 07, 2023
Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

37 Dec 08, 2022
Image marine sea litter prediction Shiny

MARLITE Shiny app for floating marine litter detection in aerial images. This directory contains the instructions and software needed to install the S

19 Dec 22, 2022
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio

Lior Yariv 521 Dec 30, 2022
Deep Ensemble Learning with Jet-Like architecture

Ransomware analysis using DEL with jet-like architecture comprising two CNN wings, a sparse AE tail, a non-linear PCA to produce a diverse feature space, and an MLP nose

Ahsen Nazir 2 Feb 06, 2022
SMPL-X: A new joint 3D model of the human body, face and hands together

SMPL-X: A new joint 3D model of the human body, face and hands together [Paper Page] [Paper] [Supp. Mat.] Table of Contents License Description News I

Vassilis Choutas 1k Jan 09, 2023
Python package for multiple object tracking research with focus on laboratory animals tracking.

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking. Features loads: MOTChallenge CSV, sleap

Matěj Šmíd 2 Sep 05, 2022
Accelerate Neural Net Training by Progressively Freezing Layers

FreezeOut A simple technique to accelerate neural net training by progressively freezing layers. This repository contains code for the extended abstra

Andy Brock 203 Jun 19, 2022
A higher performance pytorch implementation of DeepLab V3 Plus(DeepLab v3+)

A Higher Performance Pytorch Implementation of DeepLab V3 Plus Introduction This repo is an (re-)implementation of Encoder-Decoder with Atrous Separab

linhua 326 Nov 22, 2022
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
[CVPR 2021] Involution: Inverting the Inherence of Convolution for Visual Recognition, a brand new neural operator

involution Official implementation of a neural operator as described in Involution: Inverting the Inherence of Convolution for Visual Recognition (CVP

Duo Li 1.3k Dec 28, 2022
A small library for creating and manipulating custom JAX Pytree classes

Treeo A small library for creating and manipulating custom JAX Pytree classes Light-weight: has no dependencies other than jax. Compatible: Treeo Tree

Cristian Garcia 58 Nov 23, 2022
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Cross Domain Facial Expression Recognition Benchmark Implementation of papers: Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchm

89 Dec 09, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system

MAUS: A Dataset for Mental Workload Assessment Using Wearable Sensor - Baseline system Getting started To start working on this assignment, you should

2 Aug 06, 2022
Traditional deepdream with VQGAN+CLIP and optical flow. Ready to use in Google Colab

VQGAN-CLIP-Video cat.mp4 policeman.mp4 schoolboy.mp4 forsenBOG.mp4

23 Oct 26, 2022