ML for NLP and Computer Vision.

Overview

Katana ML Sparrow

PyPI - Python GitHub Stars GitHub Issues Current Version

Sparrow

About

Sparrow is our open-source ML product. It runs on Skipper MLOps infrastructure.

Primary focus:

  • NLP
  • Computer Vision

Sparrow containers are located in folder - services

Sparrow is in early development stage.

Author

Katana ML, Andrej Baranovskij

Update Sparrow from base Skipper MLOps infra GitHub

First time:

git remote add template https://github.com/katanaml/katana-skipper.git

Later:

git fetch template
git checkout master
git merge template/master

Enjoy!


Katana ML Skipper

PyPI - Python GitHub Stars GitHub Issues Current Version

This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable flow to handle requests. Engine is designed to be configurable with any microservices. Enjoy!

Skipper

Engine and Communication parts are generic and can be reused. A group of ML services is provided for sample purposes. You should replace a group of services with your own. The current group of ML services works with Boston Housing data. Data service is fetching Boston Housing data and converts it to the format suitable for TensorFlow model training. Training service builds TensorFlow model. Serving service is scaled to 2 instances and it serves prediction requests.

One of the services, helloservice, shows how to use JavaScript based microservice with Skipper. This allows to use containers with various programming languages - Python, JavaScript, Go, Rust, Java. You can run ML services with Python frameworks, Node.js or any other choice.

Author

Katana ML, Andrej Baranovskij

Instructions

Start/Stop

Docker Compose

Start:

docker-compose up --build -d

This will start Skipper services and RabbitMQ.

Stop:

docker-compose down

Web API FastAPI endpoint:

http://127.0.0.1:8080/api/v1/skipper/tasks/docs

Kubernetes

NGINX Ingress Controller:

If you are using local Kubernetes setup, install NGINX Ingress Controller

Build Docker images:

docker-compose -f docker-compose-kubernetes.yml build

Setup Kubernetes services:

./kubectl-setup.sh

Skipper API endpoint published through NGINX Ingress (you can setup your own host in /etc/hosts):

http://kubernetes.docker.internal/api/v1/skipper/tasks/docs

Check NGINX Ingress Controller pod name:

kubectl get pods -n ingress-nginx

Sample response, copy the name of 'Running' pod:

NAME                                       READY   STATUS      RESTARTS   AGE
ingress-nginx-admission-create-dhtcm       0/1     Completed   0          14m
ingress-nginx-admission-patch-x8zvw        0/1     Completed   0          14m
ingress-nginx-controller-fd7bb8d66-tnb9t   1/1     Running     0          14m

NGINX Ingress Controller logs:

kubectl logs -n ingress-nginx -f 
   

   

Skipper API logs:

kubectl logs -n katana-skipper -f -l app=skipper-api

Remove Kubernetes services:

./kubectl-remove.sh

Components

  • api - Web API implementation
  • workflow - workflow logic
  • services - a set of sample microservices, you should replace this with your own services. Update references in docker-compose.yml
  • rabbitmq - service for RabbitMQ broker
  • skipper-lib - reusable Python library to streamline event communication through RabbitMQ
  • logger - logger service

API URLs

  • Web API:
http://127.0.0.1:8080/api/v1/skipper/tasks/docs

If running on local Kubernetes with Docker Desktop:

http://kubernetes.docker.internal/api/v1/skipper/tasks/docs
  • RabbitMQ:
http://localhost:15672/ (skipper/welcome1)

If running on local Kubernets, make sure port forwarding is enabled:

kubectl -n rabbits port-forward rabbitmq-0 15672:15672

Skipper Library on PyPI

  • PyPI - skipper-lib is on PyPI

Cloud Deployment Guides

  • OKE - deployment guide for Oracle Container Engine for Kubernetes

  • GKE - deployment guide for Google Kubernetes Engine

Usage

You can use Skipper engine to run Web API, workflow and communicate with a group of ML microservices implemented under services package.

Skipper can be deployed to any Cloud vendor with Kubernetes or Docker support. You can scale Skipper runtime on Cloud using Kubernetes commands.

IMAGE ALT TEXT

IMAGE ALT TEXT

License

Licensed under the Apache License, Version 2.0. Copyright 2020-2021 Katana ML, Andrej Baranovskij. Copy of the license.

Owner
Katana ML
Machine Learning for Business Automation
Katana ML
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
Deep Learning for humans

Keras: Deep Learning for Python Under Construction In the near future, this repository will be used once again for developing the Keras codebase. For

Keras 57k Jan 09, 2023
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

42 Jul 25, 2022
PromptDet: Expand Your Detector Vocabulary with Uncurated Images

PromptDet: Expand Your Detector Vocabulary with Uncurated Images Paper Website Introduction The goal of this work is to establish a scalable pipeline

103 Dec 20, 2022
Adjusting for Autocorrelated Errors in Neural Networks for Time Series

Adjusting for Autocorrelated Errors in Neural Networks for Time Series This repository is the official implementation of the paper "Adjusting for Auto

Fan-Keng Sun 51 Nov 05, 2022
Repo for the Tutorials of Day1-Day3 of the Nordic Probabilistic AI School 2021 (https://probabilistic.ai/)

ProbAI 2021 - Probabilistic Programming and Variational Inference Tutorial with Pryo Day 1 (June 14) Slides Notebook: students_PPLs_Intro Notebook: so

PGM-Lab 46 Nov 01, 2022
(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"

(CVPR 2022) TokenCut Pytorch implementation of Tokencut: Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut Yangtao W

YANGTAO WANG 200 Jan 02, 2023
Finite Element Analysis

FElupe - Finite Element Analysis FElupe is a Python 3.6+ finite element analysis package focussing on the formulation and numerical solution of nonlin

Andreas D. 20 Jan 09, 2023
PyTorch implementation for View-Guided Point Cloud Completion

PyTorch implementation for View-Guided Point Cloud Completion

22 Jan 04, 2023
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
Unoffical implementation about Image Super-Resolution via Iterative Refinement by Pytorch

Image Super-Resolution via Iterative Refinement Paper | Project Brief This is a unoffical implementation about Image Super-Resolution via Iterative Re

LiangWei Jiang 2.5k Jan 02, 2023
Telegram chatbot created with deep learning model (LSTM) and telebot library.

Telegram chatbot Telegram chatbot created with deep learning model (LSTM) and telebot library. Description This program will allow you to create very

1 Jan 04, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
Code for "Single-view robot pose and joint angle estimation via render & compare", CVPR 2021 (Oral).

Single-view robot pose and joint angle estimation via render & compare Yann Labbé, Justin Carpentier, Mathieu Aubry, Josef Sivic CVPR: Conference on C

Yann Labbé 51 Oct 14, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 06, 2023
1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

Lihe Yang 209 Jan 01, 2023
Simulation-based performance analysis of server-less Blockchain-enabled Federated Learning

Blockchain-enabled Server-less Federated Learning Repository containing the files used to reproduce the results of the publication "Blockchain-enabled

Francesc Wilhelmi 9 Sep 27, 2022
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022
wlad 2 Dec 19, 2022
A demo of how to use JAX to create a simple gravity simulation

JAX Gravity This repo contains a demo of how to use JAX to create a simple gravity simulation. It uses JAX's experimental ode package to solve the dif

Cristian Garcia 16 Sep 22, 2022