Unoffical implementation about Image Super-Resolution via Iterative Refinement by Pytorch

Overview

Image Super-Resolution via Iterative Refinement

Paper | Project

Brief

This is a unoffical implementation about Image Super-Resolution via Iterative Refinement(SR3) by Pytorch.

There are some implement details with paper description, which maybe different with actual SR3 structure due to details missing.

  • We used the ResNet block and channel concatenation style like vanilla DDPM.
  • We used the attention mechanism in low resolution feature(16×16) like vanilla DDPM.
  • We encoding the $\gamma$ as FilM strcutrue did in WaveGrad, and embedding it without affine transformation.

Status

Conditional generation(super resolution)

  • 16×16 -> 128×128 on FFHQ-CelebaHQ
  • 64×64 -> 512×512 on FFHQ-CelebaHQ

Unconditional generation

  • 128×128 face generation on FFHQ
  • 1024×1024 face generation by a cascade of 3 models

Training Step

  • log / logger
  • metrics evaluation
  • multi-gpu support
  • resume training / pretrained model

Results

We set the maximum reverse steps budget to 2000 now.

Tasks/Metrics SSIM(+) PSNR(+) FID(-) IS(+)
16×16 -> 128×128 0.675 23.26 - -
64×64 -> 512×512 - -
128×128 - -
1024×1024 - -
show show show
show show show

Usage

Pretrained Model

This paper is based on "Denoising Diffusion Probabilistic Models", and we build both DDPM/SR3 network structure, which use timesteps/gama as model embedding input, respectively. In our experiments, SR3 model can achieve better visual results with same reverse steps and learning rate. You can select the json files with annotated suffix names to train different model.

Tasks Google Drive
16×16 -> 128×128 on FFHQ-CelebaHQ SR3
128×128 face generation on FFHQ SR3
# Download the pretrain model and edit [sr|sample]_[ddpm|sr3]_[resolution option].json about "resume_state":
"resume_state": [your pretrain model path]

We have not trained the model until converged for time reason, which means there are a lot room to optimization.

Data Prepare

New Start

If you didn't have the data, you can prepare it by following steps:

Download the dataset and prepare it in LMDB or PNG format using script.

# Resize to get 16×16 LR_IMGS and 128×128 HR_IMGS, then prepare 128×128 Fake SR_IMGS by bicubic interpolation
python prepare.py  --path [dataset root]  --out [output root] --size 16,128 -l

then you need to change the datasets config to your data path and image resolution:

"datasets": {
    "train": {
        "dataroot": "dataset/ffhq_16_128", // [output root] in prepare.py script
        "l_resolution": 16, // low resolution need to super_resolution
        "r_resolution": 128, // high resolution
        "datatype": "lmdb", //lmdb or img, path of img files
    },
    "val": {
        "dataroot": "dataset/celebahq_16_128", // [output root] in prepare.py script
    }
},

Own Data

You also can use your image data by following steps.

At first, you should organize images layout like this:

# set the high/low resolution images, bicubic interpolation images path
dataset/celebahq_16_128/
├── hr_128
├── lr_16
└── sr_16_128

then you need to change the dataset config to your data path and image resolution:

"datasets": {
    "train|val": {
        "dataroot": "dataset/celebahq_16_128",
        "l_resolution": 16, // low resolution need to super_resolution
        "r_resolution": 128, // high resolution
        "datatype": "img", //lmdb or img, path of img files
    }
},

Training/Resume Training

# Use sr.py and sample.py to train the super resolution task and unconditional generation task, respectively.
# Edit json files to adjust network structure and hyperparameters
python sr.py -p train -c config/sr_sr3.json

Test/Evaluation

# Edit json to add pretrain model path and run the evaluation 
python sr.py -p val -c config/sr_sr3.json

Evaluation Alone

# Quantitative evaluation using SSIM/PSNR metrics on given dataset root
python eval.py -p [dataset root]

Acknowledge

Our work is based on the following theoretical works:

and we are benefit a lot from following projects:

Owner
LiangWei Jiang
LiangWei Jiang
The official implementation of NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021]. https://arxiv.org/pdf/2101.12378.pdf

NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021] Release Notes The offical PyTorch implementation of NeMo, p

Angtian Wang 76 Nov 23, 2022
Implementation of TimeSformer, a pure attention-based solution for video classification

TimeSformer - Pytorch Implementation of TimeSformer, a pure and simple attention-based solution for reaching SOTA on video classification.

Phil Wang 602 Jan 03, 2023
Code for our paper 'Generalized Category Discovery'

Generalized Category Discovery This repo is a placeholder for code for our paper: Generalized Category Discovery Abstract: In this paper, we consider

107 Dec 28, 2022
Projecting interval uncertainty through the discrete Fourier transform

Projecting interval uncertainty through the discrete Fourier transform This repo

1 Mar 02, 2022
Video Swin Transformer - PyTorch

Video-Swin-Transformer-Pytorch This repo is a simple usage of the official implementation "Video Swin Transformer". Introduction Video Swin Transforme

Haofan Wang 116 Dec 20, 2022
Additional environments compatible with OpenAI gym

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning A codebase for training reinforcement learning policies for quad

Zhehui Huang 40 Dec 06, 2022
A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking

PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking PoseRBPF Paper Self-supervision Paper Pose Estimation Video Robot Manipulati

NVIDIA Research Projects 107 Dec 25, 2022
This repository is for the preprint "A generative nonparametric Bayesian model for whole genomes"

BEAR Overview This repository contains code associated with the preprint A generative nonparametric Bayesian model for whole genomes (2021), which pro

Debora Marks Lab 10 Sep 18, 2022
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

1 Nov 27, 2021
CAST: Character labeling in Animation using Self-supervision by Tracking

CAST: Character labeling in Animation using Self-supervision by Tracking (Published as a conference paper at EuroGraphics 2022) Note: The CAST paper c

15 Nov 18, 2022
Simple ONNX operation generator. Simple Operation Generator for ONNX.

sog4onnx Simple ONNX operation generator. Simple Operation Generator for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools Key concept V

Katsuya Hyodo 6 May 15, 2022
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed

Yun Liu 39 Sep 20, 2022
PushForKiCad - AISLER Push for KiCad EDA

AISLER Push for KiCad Push your layout to AISLER with just one click for instant

AISLER 31 Dec 29, 2022
[NeurIPS 2020] This project provides a strong single-stage baseline for Long-Tailed Classification, Detection, and Instance Segmentation (LVIS).

A Strong Single-Stage Baseline for Long-Tailed Problems This project provides a strong single-stage baseline for Long-Tailed Classification (under Ima

Kaihua Tang 514 Dec 23, 2022
Extracts data from the database for a graph-node and stores it in parquet files

subgraph-extractor Extracts data from the database for a graph-node and stores it in parquet files Installation For developing, it's recommended to us

Cardstack 0 Jan 10, 2022
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022