This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework

Overview

neon_course

This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework. For more information, see our documentation and our API.

Note: this version of the neon course is synchronized to work with neon v1.8.1, and some notebooks require installation of the aeon dataloader. For install instructions, see the neon and aeon documentation. See neon_course v1.2 for a version of this repository that works with neon version 1.2.

The jupyter notebooks in this repository include:

01 MNIST example

Comprehensive walk-through of how to use neon to build a simple model to recognize handwritten digits. Recommended as an introduction to the neon framework.

02 Fine-tuning

A popular application of deep learning is to load a pre-trained model and fine-tune on a new dataset that may have a different number of categories. This example walks through how to load a VGG model that has been pre-trained on ImageNet, a large corpus of natural images belonging to 1000 categories, and re-train the final few layers on the CIFAR-10 dataset, which has only 10 categories.

03 Writing a custom dataset object

neon provides many built-in methods for loading data from images, videos, audio, text, and more. In the rare cases where you may have to implement a custom dataset object, this notebooks guides users through building a custom dataset object for a modified version of the Street View House Number (SVHN) dataset. Users will not only write a custom dataset, but also design a network to, given an image, draw a bounding box around the digit sequence.

04 Writing a custom activation function and a custom layer

This notebook walks developers through how to implement custom activation functions and layers within neon. We implement the Affine layer, and demonstrate the speed-up difference between using a python-based computation and our own heavily optimized kernels.

05 Defining complex branching models

When simple sequential lists of layers do not suffice for your complex models, we present how to build complex branching models within neon.

06 Deep Residual network on the CIFAR-10 dataset

In neon, models are constructed as python lists, which makes it easy to use for-loops to define complex models that have repeated patterns, such as deep residual networks. This notebook is an end-to-end walkthrough of building a deep residual network, training on the CIFAR-10 dataset, and then applying the model to predict categories on novel images.

07 Writing a custom callback

Callbacks allow models to report back to users its progress during training. In this notebook, we present a callback that plots training cost in real-time within the jupyter notebook.

08 Detecting overfitting

Overfitting is often encountered when training deep learning models. This tutorial demonstrates how to use our visualization tools to detect when a model has overfit on the training data, and how to apply Dropout layers to correct the problem.

For several of the guided exercises, answer keys are provided in the answers/ folder.

09 Sentiment Analysis with LSTM

These two notebooks guide the user through training a recurrent neural network to classify paragraphs of movie reviews into either a positive or negative sentiment. The second notebook contains an example of inference with a trained model, including a section for users to write their own reviews and submit to the model for classification.

Setting up notebooks on remote machines

Some of these notebooks require access to a Titan X GPU. For full instructions on launching a notebook server that one could connect to from a different machine, see http://jupyter-notebook.readthedocs.io/en/latest/public_server.html. For a simple setup, first generate a configuration file:

$ jupyter notebook --generate-config

In your ~/.jupyter directory, edit the notebook config file, jupyter_notebook_config.py and edit the following lines:

c.NotebookApp.ip = '*'

c.NotebookApp.port = 8888

Save your changes and launch the jupyter notebook:

$ jupyter notebook

From a separate machine, open your browser and point to https://[server address]:8888 to connect to the jupyter notebook.

Nervana Cloud

The Nervana Cloud includes an interactive mode to launch jupyter notebooks on our Titan X GPU servers. If you have cloud credentials, launch an interactive session with the ncloud interact command.

For more information, see: http://doc.cloud.nervanasys.com/docs/latest/interact.html

Owner
Nervana
Intel® Nervana™ - Artificial Intelligence Products Group
Nervana
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
The code of “Similarity Reasoning and Filtration for Image-Text Matching” [AAAI2021]

SGRAF PyTorch implementation for AAAI2021 paper of “Similarity Reasoning and Filtration for Image-Text Matching”. It is built on top of the SCAN and C

Ronnie_IIAU 149 Dec 22, 2022
BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches

BLEND is a mechanism that can efficiently find fuzzy seed matches between sequences to significantly improve the performance and accuracy while reducing the memory space usage of two important applic

SAFARI Research Group at ETH Zurich and Carnegie Mellon University 19 Dec 26, 2022
A self-supervised learning framework for audio-visual speech

AV-HuBERT (Audio-Visual Hidden Unit BERT) Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction Robust Self-Supervised A

Meta Research 431 Jan 07, 2023
An easier way to build neural search on the cloud

An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g

Jina AI 17k Jan 02, 2023
OrienMask: Real-time Instance Segmentation with Discriminative Orientation Maps

OrienMask This repository implements the framework OrienMask for real-time instance segmentation. It achieves 34.8 mask AP on COCO test-dev at the spe

45 Dec 13, 2022
DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021)

DPT This repo is the official implementation of DPT: Deformable Patch-based Transformer for Visual Recognition (ACM MM2021). We provide code and model

CASIA-IVA-Lab 111 Dec 21, 2022
Composable transformations of Python+NumPy programsComposable transformations of Python+NumPy programs

Chex Chex is a library of utilities for helping to write reliable JAX code. This includes utils to help: Instrument your code (e.g. assertions) Debug

DeepMind 506 Jan 08, 2023
Detection of drones using their thermal signatures from thermal camera through YOLO-V3 based CNN with modifications to encapsulate drone motion

Drone Detection using Thermal Signature This repository highlights the work for night-time drone detection using a using an Optris PI Lightweight ther

Chong Yu Quan 6 Dec 31, 2022
LSSY量化交易系统

LSSY量化交易系统 该项目是本人3年来研究量化慢慢积累开发的一套系统,属于早期作品慢慢修改而来,仅供学习研究,回测分析,实盘交易部分未公开

55 Oct 04, 2022
A implemetation of the LRCN in mxnet

A implemetation of the LRCN in mxnet ##Abstract LRCN is a combination of CNN and RNN ##Installation Download UCF101 dataset ./avi2jpg.sh to split the

44 Aug 25, 2022
This is my codes that can visualize the psnr image in testing videos.

CVPR2018-Baseline-PSNRplot This is my codes that can visualize the psnr image in testing videos. Future Frame Prediction for Anomaly Detection – A New

Wenhao Yang 12 May 29, 2021
Tree LSTM implementation in PyTorch

Tree-Structured Long Short-Term Memory Networks This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representati

Riddhiman Dasgupta 529 Dec 10, 2022
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022
BridgeGAN - Tensorflow implementation of Bridging the Gap between Label- and Reference-based Synthesis in Multi-attribute Image-to-Image Translation.

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Weakly-supervised object detection.

Wetectron Wetectron is a software system that implements state-of-the-art weakly-supervised object detection algorithms. Project CVPR'20, ECCV'20 | Pa

NVIDIA Research Projects 342 Jan 05, 2023
Official PyTorch implementation of UACANet: Uncertainty Aware Context Attention for Polyp Segmentation

UACANet: Uncertainty Aware Context Attention for Polyp Segmentation Official pytorch implementation of UACANet: Uncertainty Aware Context Attention fo

Taehun Kim 85 Dec 14, 2022
Text mining project; Using distilBERT to predict authors in the classification task authorship attribution.

DistilBERT-Text-mining-authorship-attribution Dataset used: https://www.kaggle.com/azimulh/tweets-data-for-authorship-attribution-modelling/version/2

1 Jan 13, 2022
ByteTrack: Multi-Object Tracking by Associating Every Detection Box

ByteTrack ByteTrack is a simple, fast and strong multi-object tracker. ByteTrack: Multi-Object Tracking by Associating Every Detection Box Yifu Zhang,

Yifu Zhang 2.9k Jan 04, 2023
Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms

PCOS Prediction 🥼 Predicts the likelihood of Polycystic Ovary Syndrome based on

Samantha Van Seters 1 Jan 10, 2022