Detection of drones using their thermal signatures from thermal camera through YOLO-V3 based CNN with modifications to encapsulate drone motion

Overview

Drone Detection using Thermal Signature

This repository highlights the work for night-time drone detection using a using an Optris PI Lightweight thermal camera. The work is published in the International Conference of Unmanned Air Systems 2021 (ICUAS 2021) and the paper can be read in detail in ICUAS_2021_paper.

Requirements

The following are the requirements with Python 3.7.7

tensorflow==2.4.0
opencv_contrib_python==4.5.1.48
numpy==1.20.3	

Model Architecture

The following diagram highlights the architecture of model based on YOLOV3. However, unlike typical single image object detection, the model takes in the concatenation of a specified number of images in the past relative to the image of interest. This is to encapsulate the motion of the drone as an input feature for detection, a necessity given that thermal signatures of different are generally globular in shape after a certain distance depending on the fidelity of the thermal camera used. Further details can be found in ICUAS_2021_paper.

Model Architecture

Training and Testing

Clone the repository, adjust the training/testing parameters in train.py as shown and execute the code. The training data comprises of data from a controlled indoor environment while the test data contains a mixture data from indoor and outdoor environments.

# Train options
TRAIN_SAVE_BEST_ONLY        = True # saves only best model according validation loss (True recommended)
TRAIN_CLASSES               = "thermographic_data/classes.txt"
TRAIN_NUM_OF_CLASSES        = len(read_class_names(TRAIN_CLASSES))
TRAIN_MODEL_NAME            = "model_2"
TRAIN_ANNOT_PATH            = "thermographic_data/train" 
TRAIN_LOGDIR                = "log" + '/' + TRAIN_MODEL_NAME
TRAIN_CHECKPOINTS_FOLDER    = "checkpoints" + '/' + TRAIN_MODEL_NAME
TRAIN_BATCH_SIZE            = 4
TRAIN_INPUT_SIZE            = 416
TRAIN_FROM_CHECKPOINT       = False # "checkpoints/yolov3_custom"
TRAIN_LR_INIT               = 1e-4
TRAIN_LR_END                = 1e-6
TRAIN_WARMUP_EPOCHS         = 1
TRAIN_EPOCHS                = 10
TRAIN_DECAY                 = 0.8
TRAIN_DECAY_STEPS           = 50.0

# TEST options
TEST_ANNOT_PATH             = "thermographic_data/validate"
TEST_BATCH_SIZE             = 4
TEST_INPUT_SIZE             = 416
TEST_SCORE_THRESHOLD        = 0.3
TEST_IOU_THRESHOLD          = 0.45

Once the model is trained, you can test the model's predictions on images using detect_image.py. Adjust the the following parameters in detect_image.py and execute the code.

CLASSES               = "thermographic_data/classes.txt"
NUM_OF_CLASSES        = len(read_class_names(CLASSES))
MODEL_NAME            = "model_2"
CHECKPOINTS_FOLDER    = "checkpoints" + "/" + MODEL_NAME
ANNOT_PATH            = "thermographic_data/test/images/pr"
OUTPUT_PATH           = 'predicted_images/' + MODEL_NAME + "/pr"
DETECT_BATCH          = False
DETECT_WHOLE_VID      = True
BATCH_SIZE            = 1804
IMAGE_PATH            = ANNOT_PATH + "/free_3/free_3_frame_100"
INPUT_SIZE            = 416
SCORE_THRESHOLD       = 0.8
IOU_THRESHOLD         = 0.45

Similarly, you can test the model's predictions on videos using detect_video.py. Adjust the following parameters in detect_video.py and execute the code.

CLASSES               = "thermographic_data/classes.txt"
NUM_OF_CLASSES        = len(read_class_names(CLASSES))
MODEL_NAME            = "model_2"
CHECKPOINTS_FOLDER    = "checkpoints" + "/" + MODEL_NAME
ANNOT_PATH            = "raw_videos/free_2.mp4"
OUTPUT_PATH           = 'predicted_videos/' + MODEL_NAME 
INPUT_SIZE            = 416
SCORE_THRESHOLD       = 0.8
IOU_THRESHOLD         = 0.45

Examples of predictions

An example of correct drone detection in indoor environment shown below.

Indoor Detection

An example of correct drone detection in outdoor environment shown below.

Outdoor Prediction

Video of model predictions shown in indoor environment can be found here.

Owner
Chong Yu Quan
Chong Yu Quan
Instance-wise Feature Importance in Time (FIT)

Instance-wise Feature Importance in Time (FIT) FIT is a framework for explaining time series perdiction models, by assigning feature importance to eve

Sana 46 Dec 25, 2022
object recognition with machine learning on Respberry pi

Respberrypi_object-recognition object recognition with machine learning on Respberry pi line.py 建立一支與樹梅派連線的 linebot 使用此 linebot 遠端控制樹梅派拍照 config.ini l

1 Dec 11, 2021
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation

BYOL for Audio: Self-Supervised Learning for General-Purpose Audio Representation This is a demo implementation of BYOL for Audio (BYOL-A), a self-sup

NTT Communication Science Laboratories 160 Jan 04, 2023
Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Beijing ColorfulClouds Technology Co.,Ltd. 16 Aug 07, 2022
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

This is the Vowpal Wabbit fast online learning code. Why Vowpal Wabbit? Vowpal Wabbit is a machine learning system which pushes the frontier of machin

Vowpal Wabbit 8.1k Jan 06, 2023
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
Lab Materials for MIT 6.S191: Introduction to Deep Learning

This repository contains all of the code and software labs for MIT 6.S191: Introduction to Deep Learning! All lecture slides and videos are available

Alexander Amini 5.6k Dec 26, 2022
From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

SESNet for remote sensing image change detection It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Se

1 May 24, 2022
Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection

CP-Cluster Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segme

Yichun Shen 41 Dec 08, 2022
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 73 Dec 24, 2022
CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energy Management, 2020, PikaPika team

Citylearn Challenge This is the PyTorch implementation for PikaPika team, CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energ

bigAIdream projects 10 Oct 10, 2022
Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.

[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks Unofficial TensorFlow implementation of Protein Interface Prediction usin

YeongHyeon Park 9 Oct 25, 2022
Unimodal Face Classification with Multimodal Training

Unimodal Face Classification with Multimodal Training This is a PyTorch implementation of the following paper: Unimodal Face Classification with Multi

Wenbin Teng 3 Jul 06, 2022
Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
A nutritional label for food for thought.

Lexiscore As a first effort in tackling the theme of information overload in content consumption, I've been working on the lexiscore: a nutritional la

Paul Bricman 34 Nov 08, 2022
Perfect implement. Model shared. x0.5 (Top1:60.646) and 1.0x (Top1:69.402).

Shufflenet-v2-Pytorch Introduction This is a Pytorch implementation of faceplusplus's ShuffleNet-v2. For details, please read the following papers:

423 Dec 07, 2022
Automatic Data-Regularized Actor-Critic (Auto-DrAC)

Auto-DrAC: Automatic Data-Regularized Actor-Critic This is a PyTorch implementation of the methods proposed in Automatic Data Augmentation for General

89 Dec 13, 2022
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat

Mojtaba Heydari 25 Dec 16, 2022