Tree LSTM implementation in PyTorch

Overview

Tree-Structured Long Short-Term Memory Networks

This is a PyTorch implementation of Tree-LSTM as described in the paper Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks by Kai Sheng Tai, Richard Socher, and Christopher Manning. On the semantic similarity task using the SICK dataset, this implementation reaches:

  • Pearson's coefficient: 0.8492 and MSE: 0.2842 using hyperparameters --lr 0.010 --wd 0.0001 --optim adagrad --batchsize 25
  • Pearson's coefficient: 0.8674 and MSE: 0.2536 using hyperparameters --lr 0.025 --wd 0.0001 --optim adagrad --batchsize 25 --freeze_embed
  • Pearson's coefficient: 0.8676 and MSE: 0.2532 are the numbers reported in the original paper.
  • Known differences include the way the gradients are accumulated (normalized by batchsize or not).

Requirements

  • Python (tested on 3.6.5, should work on >=2.7)
  • Java >= 8 (for Stanford CoreNLP utilities)
  • Other dependencies are in requirements.txt Note: Currently works with PyTorch 0.4.0. Switch to the pytorch-v0.3.1 branch if you want to use PyTorch 0.3.1.

Usage

Before delving into how to run the code, here is a quick overview of the contents:

  • Use the script fetch_and_preprocess.sh to download the SICK dataset, Stanford Parser and Stanford POS Tagger, and Glove word vectors (Common Crawl 840) -- Warning: this is a 2GB download!), and additionally preprocees the data, i.e. generate dependency parses using Stanford Neural Network Dependency Parser.
  • main.pydoes the actual heavy lifting of training the model and testing it on the SICK dataset. For a list of all command-line arguments, have a look at config.py.
    • The first run caches GLOVE embeddings for words in the SICK vocabulary. In later runs, only the cache is read in during later runs.
    • Logs and model checkpoints are saved to the checkpoints/ directory with the name specified by the command line argument --expname.

Next, these are the different ways to run the code here to train a TreeLSTM model.

Local Python Environment

If you have a working Python3 environment, simply run the following sequence of steps:

- bash fetch_and_preprocess.sh
- pip install -r requirements.txt
- python main.py

Pure Docker Environment

If you want to use a Docker container, simply follow these steps:

- docker build -t treelstm .
- docker run -it treelstm bash
- bash fetch_and_preprocess.sh
- python main.py

Local Filesystem + Docker Environment

If you want to use a Docker container, but want to persist data and checkpoints in your local filesystem, simply follow these steps:

- bash fetch_and_preprocess.sh
- docker build -t treelstm .
- docker run -it --mount type=bind,source="$(pwd)",target="/root/treelstm.pytorch" treelstm bash
- python main.py

NOTE: Setting the environment variable OMP_NUM_THREADS=1 usually gives a speedup on the CPU. Use it like OMP_NUM_THREADS=1 python main.py. To run on a GPU, set the CUDA_VISIBLE_DEVICES instead. Usually, CUDA does not give much speedup here, since we are operating at a batchsize of 1.

Notes

  • (Apr 02, 2018) Added Dockerfile
  • (Apr 02, 2018) Now works on PyTorch 0.3.1 and Python 3.6, removed dependency on Python 2.7
  • (Nov 28, 2017) Added frozen embeddings, closed gap to paper.
  • (Nov 08, 2017) Refactored model to get 1.5x - 2x speedup.
  • (Oct 23, 2017) Now works with PyTorch 0.2.0.
  • (May 04, 2017) Added support for sparse tensors. Using the --sparse argument will enable sparse gradient updates for nn.Embedding, potentially reducing memory usage.
    • There are a couple of caveats, however, viz. weight decay will not work in conjunction with sparsity, and results from the original paper might not be reproduced using sparse embeddings.

Acknowledgements

Shout-out to Kai Sheng Tai for the original LuaTorch implementation, and to the Pytorch team for the fun library.

Contact

Riddhiman Dasgupta

This is my first PyTorch based implementation, and might contain bugs. Please let me know if you find any!

License

MIT

Owner
Riddhiman Dasgupta
Deep Learning, Science Fiction, Comic Books
Riddhiman Dasgupta
This is a code repository for paper OODformer: Out-Of-Distribution Detection Transformer

OODformer: Out-Of-Distribution Detection Transformer This repo is the official the implementation of the OODformer: Out-Of-Distribution Detection Tran

34 Dec 02, 2022
VGG16 model-based classification project about brain tumor detection.

Brain-Tumor-Classification-with-MRI VGG16 model-based classification project about brain tumor detection. First, you can check what people are doing o

Atakan Erdoğan 2 Mar 21, 2022
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022
[IEEE Transactions on Computational Imaging] Self-Gated Memory Recurrent Network for Efficient Scalable HDR Deghosting

Few-shot Deep HDR Deghosting This repository contains code and pretrained models for our paper: Self-Gated Memory Recurrent Network for Efficient Scal

Susmit Agrawal 4 Dec 29, 2021
A Convolutional Transformer for Keyword Spotting

☢️ Audiomer ☢️ Audiomer: A Convolutional Transformer for Keyword Spotting [ arXiv ] [ Previous SOTA ] [ Model Architecture ] Results on SpeechCommands

49 Jan 27, 2022
Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak.

DeepCreamPy Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak. A deep learning-based tool to automatically replace censored a

616 Jan 06, 2023
This repository contains the code for EMNLP-2021 paper "Word-Level Coreference Resolution"

Word-Level Coreference Resolution This is a repository with the code to reproduce the experiments described in the paper of the same name, which was a

79 Dec 27, 2022
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two

512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe

Phil Wang 1.5k Jan 02, 2023
A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

Yutian Liu 2 Jan 29, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
Docker containers of baseline agents for the Crafter environment

Crafter Baselines This repository contains Docker containers for running various baselines on the Crafter environment. Reward Agents DreamerV2 based o

Danijar Hafner 17 Sep 25, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
The official project of SimSwap (ACM MM 2020)

SimSwap: An Efficient Framework For High Fidelity Face Swapping Proceedings of the 28th ACM International Conference on Multimedia The official reposi

Six_God 2.6k Jan 08, 2023
Gin provides a lightweight configuration framework for Python

Gin Config Authors: Dan Holtmann-Rice, Sergio Guadarrama, Nathan Silberman Contributors: Oscar Ramirez, Marek Fiser Gin provides a lightweight configu

Google 1.7k Jan 03, 2023
Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks

Lip Reading - Cross Audio-Visual Recognition using 3D Convolutional Neural Networks - Official Project Page This repository contains the code develope

Amirsina Torfi 1.7k Dec 18, 2022
VGGVox models for Speaker Identification and Verification trained on the VoxCeleb (1 & 2) datasets

VGGVox models for speaker identification and verification This directory contains code to import and evaluate the speaker identification and verificat

338 Dec 27, 2022
Duke Machine Learning Winter School: Computer Vision 2022

mlwscv2002 Welcome to the Duke Machine Learning Winter School: Computer Vision 2022! The MLWS-CV includes 3 hands-on training sessions on implementing

Duke + Data Science (+DS) 9 May 25, 2022
Neon-erc20-example - Example of creating SPL token and wrapping it with ERC20 interface in Neon EVM

Example of wrapping SPL token by ERC2-20 interface in Neon Requirements Install

7 Mar 28, 2022
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
An implementation of Deep Forest 2021.2.1.

Deep Forest (DF) 21 DF21 is an implementation of Deep Forest 2021.2.1. It is designed to have the following advantages: Powerful: Better accuracy than

LAMDA Group, Nanjing University 795 Jan 03, 2023