LSSY量化交易系统

Related tags

Deep LearningLSSY
Overview

LSSY量化交易系统

该项目是本人3年来研究量化慢慢积累开发的一套系统,属于早期作品慢慢修改而来,仅供学习研究,回测分析,实盘交易部分未公开。购买课程的朋友可以找我获取实盘部分和去邀请码。

支持A股和可转债市场并且可以实盘全自动交易的量化交易系统。

开源的目的是希望能有更多的人来参与社区维护,共同打造最完美的量化交易系统。

目前市场上集量化回测、实盘交易的系统并不多,适用A股的更是寥寥无几,要么收费高昂,LSSY量化交易系统为了让研究量化交易的朋友人人都能用,所以在此开源,并且完全免费,希望更多的人来参与完善系统,贡献自己的一份力量,避免大家重复劳动。

LSSY量化交易系统致力于量化交易,不再主观交易,通过数据,做大概率,让量化交易变得更容易,大家都可以参与完善,为了更好的利于社区发展,目前采用邀请制,使用邀请码才能完整的使用LSSY量化交易系统,提交代码或者邀请朋友都可以免费获得邀请码(在社区讨论QQ群发放)。

使用LSSY量化交易系统编写海龟交易法则

https://edu.csdn.net/course/detail/31900

LSSY量化交易系统的全面详细分析视频教程

https://edu.csdn.net/course/detail/31906

安装

  • Windows

    1.安装Linux子系统,选择ubuntu子系统。

    2.给子系统安装pip3

    sudo apt install python3-pip
    

    3.安装数据库

    sudo apt install redis
    

    4.启动数据库,子系统不能自动启动,所以每次都需要手动启动数据库服务,所以不建议在Windows上运行。

    redis-server
    
  • Linux

    1.安装 redis 数据库

    sudo apt install redis
    

    2.需要 python3.8

    下载源码编译安装:https://www.python.org/ftp/python/3.8.7/Python-3.8.7.tar.xz

执行安装脚本

./install.sh

启动LSSY量化交易系统

进入实盘交易

./runWork.py

进入回测

./runWork.py b

访问前端

推荐分辨率>=2k

http://127.0.0.1:8000/

redis 快照报错

修改配置文件

/etc/redis/redis.conf

找到

################################ SNAPSHOTTING  ################################
...
...
stop-writes-on-bgsave-error yes

改为

stop-writes-on-bgsave-error no

初次启动注意事项

首次部署LSSY量化交易系统,会下载大量财务历史等数据,根据网络情况可能会很慢,建议晚上睡觉前启动系统,一般到第二天就全部下载完成了,仅首次运行,后续每天只需要更新k线即可,速度会快很多。

QQ群讨论社区:174647513

Federated Learning Based on Dynamic Regularization

Federated Learning Based on Dynamic Regularization This is implementation of Federated Learning Based on Dynamic Regularization. Requirements Please i

39 Jan 07, 2023
Toolbox to analyze temporal context invariance of deep neural networks

PyTCI A toolbox that estimates the integration window of a sensory response using the "Temporal Context Invariance" paradigm (TCI). The TCI method Int

4 Oct 23, 2022
Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue

Realtime Unsupervised Depth Estimation from an Image This is the caffe implementation of our paper "Unsupervised CNN for single view depth estimation:

Ravi Garg 227 Nov 28, 2022
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.datasets: The raw text iterators for common NLP datasets torchtext.data: Some basic NLP building bloc

3.2k Jan 08, 2023
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
Using multidimensional LSTM neural networks to create a forecast for Bitcoin price

Multidimensional LSTM BitCoin Time Series Using multidimensional LSTM neural networks to create a forecast for Bitcoin price. For notes around this co

Jakob Aungiers 318 Dec 14, 2022
git《Beta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021
A note taker for NVDA. Allows the user to create, edit, view, manage and export notes to different formats.

Quick Notetaker add-on for NVDA The Quick Notetaker add-on is a wonderful tool which allows writing notes quickly and easily anytime and from any app

5 Dec 06, 2022
ESL: Event-based Structured Light

ESL: Event-based Structured Light Video (click on the image) This is the code for the 2021 3DV paper ESL: Event-based Structured Light by Manasi Mugli

Robotics and Perception Group 29 Oct 24, 2022
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Yasunori Shimura 12 Nov 09, 2022
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement

Sincere 16 Dec 15, 2022
A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering.

DeepFilterNet A Low Complexity Speech Enhancement Framework for Full-Band Audio (48kHz) based on Deep Filtering. libDF contains Rust code used for dat

Hendrik Schröter 292 Dec 25, 2022
Open source code for Paper "A Co-Interactive Transformer for Joint Slot Filling and Intent Detection"

A Co-Interactive Transformer for Joint Slot Filling and Intent Detection This repository contains the PyTorch implementation of the paper: A Co-Intera

67 Dec 05, 2022
Statistical-Rethinking-with-Python-and-PyMC3 - Python/PyMC3 port of the examples in " Statistical Rethinking A Bayesian Course with Examples in R and Stan" by Richard McElreath

Statistical Rethinking with Python and PyMC3 This repository has been deprecated in favour of this one, please check that repository for updates, for

Osvaldo Martin 786 Dec 29, 2022
Deep Residual Learning for Image Recognition

Deep Residual Learning for Image Recognition This is a Torch implementation of "Deep Residual Learning for Image Recognition",Kaiming He, Xiangyu Zhan

Kimmy 561 Dec 01, 2022
GARCH and Multivariate LSTM forecasting models for Bitcoin realized volatility with potential applications in crypto options trading, hedging, portfolio management, and risk management

Bitcoin Realized Volatility Forecasting with GARCH and Multivariate LSTM Author: Chi Bui This Repository Repository Directory ├── README.md

Chi Bui 113 Dec 29, 2022
Python library for science observations from the James Webb Space Telescope

JWST Calibration Pipeline JWST requires Python 3.7 or above and a C compiler for dependencies. Linux and MacOS platforms are tested and supported. Win

Space Telescope Science Institute 386 Dec 30, 2022
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

3 May 01, 2022