Code for Understanding Pooling in Graph Neural Networks

Related tags

Deep LearningSRC
Overview

Select, Reduce, Connect

This repository contains the code used for the experiments of:

"Understanding Pooling in Graph Neural Networks"

Setup

Install TensorFlow and other dependencies:

pip install -r requirements.txt

Running experiments

Experiments are found in the following folders:

  • autoencoder/
  • spectral_similarity/
  • graph_classification/

Each folder has a bash script called run_all.sh that will reproduce the results reported in the paper.

To generate the plots and tables that we included in the paper, you can use the plots.py, plots_datasets.py, or tables.py found in the folders.

To run experiments for an individual pooling operator, you can use the run_[OPERATOR NAME].py scripts in each folder.

The pooling operators that we used for the experiments are found in layers/ (trainable) and modules/ (non-trainable). The GNN architectures used in the experiments are found in models/.

The SRCPool class

The core of this repository is the SRCPool class that implements a general interface to create SRC pooling layers with the Keras API.

Our implementation of MinCutPool, DiffPool, LaPool, Top-K, and SAGPool using the SRCPool class can be found in src/layers.

In general, SRC layers compute:

Where is a node equivariant selection function that computes the supernode assignments , is a permutation-invariant function to reduce the supernodes into the new node attributes, and is a permutation-invariant connection function that computes the links between the pooled nodes.

By extending this class, it is possible to create any pooling layer in the SRC framework.

Input

  • X: Tensor of shape ([batch], N, F) representing node features;
  • A: Tensor or SparseTensor of shape ([batch], N, N) representing the adjacency matrix;
  • I: (optional) Tensor of integers with shape (N, ) representing the batch index;

Output

  • X_pool: Tensor of shape ([batch], K, F), representing the node features of the output. K is the number of output nodes and depends on the specific pooling strategy;
  • A_pool: Tensor or SparseTensor of shape ([batch], K, K) representing the adjacency matrix of the output;
  • I_pool: (only if I was given as input) Tensor of integers with shape (K, ) representing the batch index of the output;
  • S_pool: (if return_sel=True) Tensor or SparseTensor representing the supernode assignments;

API

  • pool(X, A, I, **kwargs): pools the graph and returns the reduced node features and adjacency matrix. If the batch index I is not None, a reduced version of I will be returned as well. Any given kwargs will be passed as keyword arguments to select(), reduce() and connect() if any matching key is found. The mandatory arguments of pool() (X, A, and I) must be computed in call() by calling self.get_inputs(inputs).
  • select(X, A, I, **kwargs): computes supernode assignments mapping the nodes of the input graph to the nodes of the output.
  • reduce(X, S, **kwargs): reduces the supernodes to form the nodes of the pooled graph.
  • connect(A, S, **kwargs): connects the reduced supernodes.
  • reduce_index(I, S, **kwargs): helper function to reduce the batch index (only called if I is given as input).

When overriding any function of the API, it is possible to access the true number of nodes of the input (N) as a Tensor in the instance variable self.N (this is populated by self.get_inputs() at the beginning of call()).

Arguments:

  • return_sel: if True, the Tensor used to represent supernode assignments will be returned with X_pool, A_pool, and I_pool;
Owner
Daniele Grattarola
PhD student @ Università della Svizzera italiana
Daniele Grattarola
An expansion for RDKit to read all types of files in one line

RDMolReader An expansion for RDKit to read all types of files in one line How to use? Add this single .py file to your project and import MolFromFile(

Ali Khodabandehlou 1 Dec 18, 2021
A curated (most recent) list of resources for Learning with Noisy Labels

A curated (most recent) list of resources for Learning with Noisy Labels

Jiaheng Wei 321 Jan 09, 2023
General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021 Paper | Project Page Outline Dependencies Testing with Trained Weights Trainin

Haoran MO 118 Dec 27, 2022
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
RoBERTa Marathi Language model trained from scratch during huggingface 🤗 x flax community week

RoBERTa base model for Marathi Language (मराठी भाषा) Pretrained model on Marathi language using a masked language modeling (MLM) objective. RoBERTa wa

Nipun Sadvilkar 23 Oct 19, 2022
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Text-AutoAugment (TAA) This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classific

LancoPKU 105 Jan 03, 2023
Differentiable architecture search for convolutional and recurrent networks

Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX

Hanxiao Liu 3.7k Jan 09, 2023
Deep motion transfer

animation-with-keypoint-mask Paper The right most square is the final result. Softmax mask (circles): \ Heatmap mask: \ conda env create -f environmen

9 Nov 01, 2022
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022
'A C2C E-COMMERCE TRUST MODEL BASED ON REPUTATION' Python implementation

Project description A library providing functionalities to calculate reputation and degree of trust on C2C ecommerce platforms. The work is fully base

Davide Bigotti 2 Dec 14, 2022
Deep Probabilistic Programming Course @ DIKU

Deep Probabilistic Programming Course @ DIKU

52 May 14, 2022
FFCV: Fast Forward Computer Vision (and other ML workloads!)

Fast Forward Computer Vision: train models at a fraction of the cost with accele

FFCV 2.3k Jan 03, 2023
RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids Real-time detection performance. This repo contains the code an

0 Nov 10, 2021
Sum-Product Probabilistic Language

Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere

MIT Probabilistic Computing Project 57 Nov 17, 2022
Code for You Only Cut Once: Boosting Data Augmentation with a Single Cut

You Only Cut Once (YOCO) YOCO is a simple method/strategy of performing augmenta

88 Dec 28, 2022
Course on computational design, non-linear optimization, and dynamics of soft systems at UIUC.

Computational Design and Dynamics of Soft Systems · This is a repository that contains the source code for generating the lecture notes, handouts, exe

Tejaswin Parthasarathy 4 Jul 21, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023