General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

Overview

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021

Paper | Project Page

    

Outline

Dependencies

Testing with Trained Weights

Model Preparation

Download the models here:

  • pretrain_clean_line_drawings (105 MB): for vectorization
  • pretrain_rough_sketches (105 MB): for rough sketch simplification
  • pretrain_faces (105 MB): for photograph to line drawing

Then, place them in this file structure:

outputs/
    snapshot/
        pretrain_clean_line_drawings/
        pretrain_rough_sketches/
        pretrain_faces/

Usage

Choose the image in the sample_inputs/ directory, and run one of the following commands for each task. The results will be under outputs/sampling/.

python3 test_vectorization.py --input muten.png

python3 test_rough_sketch_simplification.py --input rocket.png

python3 test_photograph_to_line.py --input 1390.png

Note!!! Our approach starts drawing from a randomly selected initial position, so it outputs different results in every testing trial (some might be fine and some might not be good enough). It is recommended to do several trials to select the visually best result. The number of outputs can be defined by the --sample argument:

python3 test_vectorization.py --input muten.png --sample 10

python3 test_rough_sketch_simplification.py --input rocket.png --sample 10

python3 test_photograph_to_line.py --input 1390.png --sample 10

Reproducing Paper Figures: our results (download from here) are selected by doing a certain number of trials. Apparently, it is required to use the same initial drawing positions to reproduce our results.

Additional Tools

a) Visualization

Our vector output is stored in a npz package. Run the following command to obtain the rendered output and the drawing order. Results will be under the same directory of the npz file.

python3 tools/visualize_drawing.py --file path/to/the/result.npz 

b) GIF Making

To see the dynamic drawing procedure, run the following command to obtain the gif. Result will be under the same directory of the npz file.

python3 tools/gif_making.py --file path/to/the/result.npz 

c) Conversion to SVG

Our vector output in a npz package is stored as Eq.(1) in the main paper. Run the following command to convert it to the svg format. Result will be under the same directory of the npz file.

python3 tools/svg_conversion.py --file path/to/the/result.npz 
  • The conversion is implemented in two modes (by setting the --svg_type argument):
    • single (default): each stroke (a single segment) forms a path in the SVG file
    • cluster: each continuous curve (with multiple strokes) forms a path in the SVG file

Important Notes

In SVG format, all the segments on a path share the same stroke-width. While in our stroke design, strokes on a common curve have different widths. Inside a stroke (a single segment), the thickness also changes linearly from an endpoint to another. Therefore, neither of the two conversion methods above generate visually the same results as the ones in our paper. (Please mention this issue in your paper if you do qualitative comparisons with our results in SVG format.)


Training

Preparations

Download the models here:

  • pretrain_neural_renderer (40 MB): the pre-trained neural renderer
  • pretrain_perceptual_model (691 MB): the pre-trained perceptual model for raster loss

Download the datasets here:

  • QuickDraw-clean (14 MB): for clean line drawing vectorization. Taken from QuickDraw dataset.
  • QuickDraw-rough (361 MB): for rough sketch simplification. Synthesized by the pencil drawing generation method from Sketch Simplification.
  • CelebAMask-faces (370 MB): for photograph to line drawing. Processed from the CelebAMask-HQ dataset.

Then, place them in this file structure:

datasets/
    QuickDraw-clean/
    QuickDraw-rough/
    CelebAMask-faces/
outputs/
    snapshot/
        pretrain_neural_renderer/
        pretrain_perceptual_model/

Running

It is recommended to train with multi-GPU. We train each task with 2 GPUs (each with 11 GB).

python3 train_vectorization.py

python3 train_rough_photograph.py --data rough

python3 train_rough_photograph.py --data face

Citation

If you use the code and models please cite:

@article{mo2021virtualsketching,
  title   = {General Virtual Sketching Framework for Vector Line Art},
  author  = {Mo, Haoran and Simo-Serra, Edgar and Gao, Chengying and Zou, Changqing and Wang, Ruomei},
  journal = {ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2021)},
  year    = {2021},
  volume  = {40},
  number  = {4},
  pages   = {51:1--51:14}
}
Code for "Universal inference meets random projections: a scalable test for log-concavity"

How to use this repository This repository contains code to replicate the results of "Universal inference meets random projections: a scalable test fo

Robin Dunn 0 Nov 21, 2021
A DCGAN to generate anime faces using custom mined dataset

Anime-Face-GAN-Keras A DCGAN to generate anime faces using custom dataset in Keras. Dataset The dataset is created by crawling anime database websites

Pavitrakumar P 190 Jan 03, 2023
Supervised forecasting of sequential data in Python.

Supervised forecasting of sequential data in Python. Intro Supervised forecasting is the machine learning task of making predictions for sequential da

The Alan Turing Institute 54 Nov 15, 2022
DualGAN-tensorflow: tensorflow implementation of DualGAN

ICCV paper of DualGAN DualGAN: unsupervised dual learning for image-to-image translation please cite the paper, if the codes has been used for your re

Jack Yi 252 Nov 10, 2022
pytorch implementation of openpose including Hand and Body Pose Estimation.

pytorch-openpose pytorch implementation of openpose including Body and Hand Pose Estimation, and the pytorch model is directly converted from openpose

Hzzone 1.4k Jan 07, 2023
Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)

Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021) Kun Wang, Zhenyu Zhang, Zhiqiang Yan, X

kunwang 66 Nov 24, 2022
Unofficial implementation of MLP-Mixer: An all-MLP Architecture for Vision

MLP-Mixer: An all-MLP Architecture for Vision This repo contains PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision. Usage : impo

Rishikesh (ऋषिकेश) 175 Dec 23, 2022
A Python framework for conversational search

Chatty Goose Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting Installation Ma

Castorini 36 Oct 23, 2022
ConvMixer unofficial implementation

ConvMixer ConvMixer 非官方实现 pytorch 版本已经实现。 nets 是重构版本 ,test 是官方代码 感兴趣小伙伴可以对照看一下。 keras 已经实现 tf2.x 中 是tensorflow 2 版本 gelu 激活函数要求 tf=2.4 否则使用入下代码代替gelu

Jian Tengfei 8 Jul 11, 2022
Mixed Neural Likelihood Estimation for models of decision-making

Mixed neural likelihood estimation for models of decision-making Mixed neural likelihood estimation (MNLE) enables Bayesian parameter inference for mo

mackelab 9 Dec 22, 2022
tf2onnx - Convert TensorFlow, Keras and Tflite models to ONNX.

tf2onnx converts TensorFlow (tf-1.x or tf-2.x), tf.keras and tflite models to ONNX via command line or python api.

Open Neural Network Exchange 1.8k Jan 08, 2023
[SIGGRAPH 2020] Attribute2Font: Creating Fonts You Want From Attributes

Attr2Font Introduction This is the official PyTorch implementation of the Attribute2Font: Creating Fonts You Want From Attributes. Paper: arXiv | Rese

Yue Gao 200 Dec 15, 2022
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 05, 2023
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022
Bounding Wasserstein distance with couplings

BoundWasserstein These scripts reproduce the results of the article Bounding Wasserstein distance with couplings by Niloy Biswas and Lester Mackey. ar

Niloy Biswas 1 Jan 11, 2022
Agent-based model simulator for air quality and pandemic risk assessment in architectural spaces

Agent-based model simulation for air quality and pandemic risk assessment in architectural spaces. User Guide archABM is a fast and open source agent-

Vicomtech 10 Dec 05, 2022
El-Gamal on Elliptic Curve (Python)

El-Gamal-on-EC El-Gamal on Elliptic Curve (Python) References: https://docsdrive.com/pdfs/ansinet/itj/2005/299-306.pdf https://arxiv.org/ftp/arxiv/pap

3 May 04, 2022
On Generating Extended Summaries of Long Documents

ExtendedSumm This repository contains the implementation details and datasets used in On Generating Extended Summaries of Long Documents paper at the

Georgetown Information Retrieval Lab 76 Sep 05, 2022
Predict stock movement with Machine Learning and Deep Learning algorithms

Project Overview Stock market movement prediction using LSTM Deep Neural Networks and machine learning algorithms Software and Library Requirements Th

Naz Delam 46 Sep 13, 2022