Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Overview

Text-AutoAugment (TAA)

This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification (EMNLP 2021 main conference).

Overview of IAIS

Overview

  1. We present a learnable and compositional framework for data augmentation. Our proposed algorithm automatically searches for the optimal compositional policy, which improves the diversity and quality of augmented samples.

  2. In low-resource and class-imbalanced regimes of six benchmark datasets, TAA significantly improves the generalization ability of deep neural networks like BERT and effectively boosts text classification performance.

Getting Started

  1. Prepare environment

    conda create -n taa python=3.6
    conda activate taa
    conda install pytorch torchvision cudatoolkit=10.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch
    pip install -r requirements.txt 
    python -c "import nltk; nltk.download('wordnet'); nltk.download('averaged_perceptron_tagger')"
  2. Modify dataroot parameter in confs/*yaml and abspath parameter in script/*.sh:

    • e.g., change dataroot: /home/renshuhuai/TextAutoAugment/data/aclImdb in confs/bert_imdb.yaml to dataroot: path-to-your-TextAutoAugment/data/aclImdb
    • change --abspath '/home/renshuhuai/TextAutoAugment' in script/imdb_lowresource.sh to --abspath 'path-to-your-TextAutoAugment'
  3. Search for the best augmentation policy, e.g., low-resource regime for IMDB:

    sh script/imdb_lowresource.sh

    scripts for policy search in the low-resource and class-imbalanced regime for all datasets are provided in the script/ fold.

  4. Train a model with pre-searched policy in archive.py, e.g., train model in low-resource regime for IMDB:

    python train.py -c confs/bert_imdb.yaml 

    train model on full dataset of IMDB:

    python train.py -c confs/bert_imdb.yaml --train-npc -1 --valid-npc -1 --test-npc -1  

Contact

If you have any questions related to the code or the paper, feel free to email Shuhuai (renshuhuai007 [AT] gmail [DOT] com).

Acknowledgments

Code refers to: fast-autoaugment.

Citation

If you find this code useful for your research, please consider citing:

@inproceedings{ren2021taa,
  title={Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification},
  author={Shuhuai Ren, Jinchao Zhang, Lei Li, Xu Sun, Jie Zhou},
  booktitle={EMNLP},
  year={2021}
}

License

MIT

Owner
LancoPKU
Language Computing and Machine Learning Group (Xu Sun's group) at Peking University
LancoPKU
A collection of scripts I developed for personal and working projects.

A collection of scripts I developed for personal and working projects Table of contents Introduction Repository diagram structure List of scripts pyth

Gianluca Bianco 109 Dec 26, 2022
Complete system for facial identity system

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

4 May 02, 2022
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

LongScientificFormer For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training. Some code

Athar Sefid 6 Nov 02, 2022
Python package for multiple object tracking research with focus on laboratory animals tracking.

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking. Features loads: MOTChallenge CSV, sleap

Matěj Šmíd 2 Sep 05, 2022
My personal Home Assistant configuration.

About This is my personal Home Assistant configuration. My guiding princile is to have full local control of all my devices. I intend everything to ru

Chris Turra 13 Jun 07, 2022
A decent AI that solves daily Wordle puzzles. Works with different websites with similar wordlists,.

Wordle-AI A decent AI that solves daily "Wordle" puzzles. Works with different websites with similar wordlists. When prompted with "Word:" enter the w

Ethan 1 Feb 10, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
Implementation of Geometric Vector Perceptron, a simple circuit for 3d rotation equivariance for learning over large biomolecules, in Pytorch. Idea proposed and accepted at ICLR 2021

Geometric Vector Perceptron Implementation of Geometric Vector Perceptron, a simple circuit with 3d rotation equivariance for learning over large biom

Phil Wang 59 Nov 24, 2022
StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion

StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion Yinghao Aaron Li, Ali Zare, Nima Mesgarani We pres

Aaron (Yinghao) Li 282 Jan 01, 2023
PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning

safe-control-gym Physics-based CartPole and Quadrotor Gym environments (using PyBullet) with symbolic a priori dynamics (using CasADi) for learning-ba

Dynamic Systems Lab 300 Dec 28, 2022
Code for "Layered Neural Rendering for Retiming People in Video."

Layered Neural Rendering in PyTorch This repository contains training code for the examples in the SIGGRAPH Asia 2020 paper "Layered Neural Rendering

Google 154 Dec 16, 2022
Joint-task Self-supervised Learning for Temporal Correspondence (NeurIPS 2019)

Joint-task Self-supervised Learning for Temporal Correspondence Project | Paper Overview Joint-task Self-supervised Learning for Temporal Corresponden

Sifei Liu 167 Dec 14, 2022
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE: A Benchmark Suite for Data-centric NLP You can get the english version of README. 以数据为中心的AI测评(DataCLUE) 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE

CLUE benchmark 135 Dec 22, 2022
Source code for the paper: Variance-Aware Machine Translation Test Sets (NeurIPS 2021 Datasets and Benchmarks Track)

Variance-Aware-MT-Test-Sets Variance-Aware Machine Translation Test Sets License See LICENSE. We follow the data licensing plan as the same as the WMT

NLP2CT Lab, University of Macau 5 Dec 21, 2021
Pytorch version of SfmLearner from Tinghui Zhou et al.

SfMLearner Pytorch version This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghu

Clément Pinard 909 Dec 22, 2022
Configure SRX interfaces with Scrapli

Configure SRX interfaces with Scrapli Overview This example will show how to configure interfaces on Juniper's SRX firewalls. In addition to the Pytho

Calvin Remsburg 1 Jan 07, 2022
Out-of-distribution detection using the pNML regret. NeurIPS2021

OOD Detection Load conda environment conda env create -f environment.yml or install requirements: while read requirement; do conda install --yes $requ

Koby Bibas 23 Dec 02, 2022
Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy

Creating a Linear Program Solver by Implementing the Simplex Method in Python with NumPy Simplex Algorithm is a popular algorithm for linear programmi

Reda BELHAJ 2 Oct 12, 2022