Pytorch version of SfmLearner from Tinghui Zhou et al.

Overview

SfMLearner Pytorch version

This codebase implements the system described in the paper:

Unsupervised Learning of Depth and Ego-Motion from Video

Tinghui Zhou, Matthew Brown, Noah Snavely, David G. Lowe

In CVPR 2017 (Oral).

See the project webpage for more details.

Original Author : Tinghui Zhou ([email protected]) Pytorch implementation : Clément Pinard ([email protected])

sample_results

Preamble

This codebase was developed and tested with Pytorch 1.0.1, CUDA 10 and Ubuntu 16.04. Original code was developped in tensorflow, you can access it here

Prerequisite

pip3 install -r requirements.txt

or install manually the following packages :

pytorch >= 1.0.1
pebble
matplotlib
imageio
scipy
argparse
tensorboardX
blessings
progressbar2
path.py

Note

Because it uses latests pytorch features, it is not compatible with anterior versions of pytorch.

If you don't have an up to date pytorch, the tags can help you checkout the right commits corresponding to your pytorch version.

What has been done

  • Training has been tested on KITTI and CityScapes.
  • Dataset preparation has been largely improved, and now stores image sequences in folders, making sure that movement is each time big enough between each frame
  • That way, training is now significantly faster, running at ~0.14sec per step vs ~0.2s per steps initially (on a single GTX980Ti)
  • In addition you don't need to prepare data for a particular sequence length anymore as stacking is made on the fly.
  • You can still choose the former stacked frames dataset format.
  • Convergence is now almost as good as original paper with same hyper parameters
  • You can know compare with groud truth for your validation set. It is still possible to validate without, but you now can see that minimizing photometric error is not equivalent to optimizing depth map.

Differences with official Implementation

  • Smooth Loss is different from official repo. Instead of applying it to disparity, we apply it to depth. Original disparity smooth loss did not work well (don't know why !) and it did not even converge at all with weight values used (0.5).
  • loss is divided by 2.3 when downscaling instead of 2. This is the results of empiric experiments, so the optimal value is clearly not carefully determined.
  • As a consequence, with a smooth loss of 2.0̀, depth test is better, but Pose test is worse. To revert smooth loss back to original, you can change it here

Preparing training data

Preparation is roughly the same command as in the original code.

For KITTI, first download the dataset using this script provided on the official website, and then run the following command. The --with-depth option will save resized copies of groundtruth to help you setting hyper parameters. The --with-pose will dump the sequence pose in the same format as Odometry dataset (see pose evaluation)

python3 data/prepare_train_data.py /path/to/raw/kitti/dataset/ --dataset-format 'kitti' --dump-root /path/to/resulting/formatted/data/ --width 416 --height 128 --num-threads 4 [--static-frames /path/to/static_frames.txt] [--with-depth] [--with-pose]

For Cityscapes, download the following packages: 1) leftImg8bit_sequence_trainvaltest.zip, 2) camera_trainvaltest.zip. You will probably need to contact the administrators to be able to get it. Then run the following command

python3 data/prepare_train_data.py /path/to/cityscapes/dataset/ --dataset-format 'cityscapes' --dump-root /path/to/resulting/formatted/data/ --width 416 --height 171 --num-threads 4

Notice that for Cityscapes the img_height is set to 171 because we crop out the bottom part of the image that contains the car logo, and the resulting image will have height 128.

Training

Once the data are formatted following the above instructions, you should be able to train the model by running the following command

python3 train.py /path/to/the/formatted/data/ -b4 -m0.2 -s0.1 --epoch-size 3000 --sequence-length 3 --log-output [--with-gt]

You can then start a tensorboard session in this folder by

tensorboard --logdir=checkpoints/

and visualize the training progress by opening https://localhost:6006 on your browser. If everything is set up properly, you should start seeing reasonable depth prediction after ~30K iterations when training on KITTI.

Evaluation

Disparity map generation can be done with run_inference.py

python3 run_inference.py --pretrained /path/to/dispnet --dataset-dir /path/pictures/dir --output-dir /path/to/output/dir

Will run inference on all pictures inside dataset-dir and save a jpg of disparity (or depth) to output-dir for each one see script help (-h) for more options.

Disparity evaluation is avalaible

python3 test_disp.py --pretrained-dispnet /path/to/dispnet --pretrained-posenet /path/to/posenet --dataset-dir /path/to/KITTI_raw --dataset-list /path/to/test_files_list

Test file list is available in kitti eval folder. To get fair comparison with Original paper evaluation code, don't specify a posenet. However, if you do, it will be used to solve the scale factor ambiguity, the only ground truth used to get it will be vehicle speed which is far more acceptable for real conditions quality measurement, but you will obviously get worse results.

Pose evaluation is also available on Odometry dataset. Be sure to download both color images and pose !

python3 test_pose.py /path/to/posenet --dataset-dir /path/to/KITIT_odometry --sequences [09]

ATE (Absolute Trajectory Error) is computed as long as RE for rotation (Rotation Error). RE between R1 and R2 is defined as the angle of R1*R2^-1 when converted to axis/angle. It corresponds to RE = arccos( (trace(R1 @ R2^-1) - 1) / 2). While ATE is often said to be enough to trajectory estimation, RE seems important here as sequences are only seq_length frames long.

Pretrained Nets

Avalaible here

Arguments used :

python3 train.py /path/to/the/formatted/data/ -b4 -m0 -s2.0 --epoch-size 1000 --sequence-length 5 --log-output --with-gt

Depth Results

Abs Rel Sq Rel RMSE RMSE(log) Acc.1 Acc.2 Acc.3
0.181 1.341 6.236 0.262 0.733 0.901 0.964

Pose Results

5-frames snippets used

Seq. 09 Seq. 10
ATE 0.0179 (std. 0.0110) 0.0141 (std. 0.0115)
RE 0.0018 (std. 0.0009) 0.0018 (std. 0.0011)

Discussion

Here I try to link the issues that I think raised interesting questions about scale factor, pose inference, and training hyperparameters

  • Issue 48 : Why is target frame at the center of the sequence ?
  • Issue 39 : Getting pose vector without the scale factor uncertainty
  • Issue 46 : Is Interpolated groundtruth better than sparse groundtruth ?
  • Issue 45 : How come the inverse warp is absolute and pose and depth are only relative ?
  • Issue 32 : Discussion about validation set, and optimal batch size
  • Issue 25 : Why filter out static frames ?
  • Issue 24 : Filtering pixels out of the photometric loss
  • Issue 60 : Inverse warp is only one way !

Other Implementations

TensorFlow by tinghuiz (original code, and paper author)

Owner
Clément Pinard
PhD ENSTA Paris, Deep Learning Engineer @ ContentSquare
Clément Pinard
Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks"

HKD Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks" cifia-100 result The implementation of compared methods are ba

Wang Yucheng 30 Dec 18, 2022
Like Dirt-Samples, but cleaned up

Clean-Samples Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the

TidalCycles 39 Nov 30, 2022
Using multidimensional LSTM neural networks to create a forecast for Bitcoin price

Multidimensional LSTM BitCoin Time Series Using multidimensional LSTM neural networks to create a forecast for Bitcoin price. For notes around this co

Jakob Aungiers 318 Dec 14, 2022
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022
[BMVC2021] "TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation"

TransFusion-Pose TransFusion: Cross-view Fusion with Transformer for 3D Human Pose Estimation Haoyu Ma, Liangjian Chen, Deying Kong, Zhe Wang, Xingwei

Haoyu Ma 29 Dec 23, 2022
OpenFace – a state-of-the art tool intended for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation.

OpenFace 2.2.0: a facial behavior analysis toolkit Over the past few years, there has been an increased interest in automatic facial behavior analysis

Tadas Baltrusaitis 5.8k Dec 31, 2022
The sixth place winning solution (6/220) in 2021 Gaofen Challenge.

SwinTransformer + OBBDet The sixth place winning solution (6/220) in the track of Fine-grained Object Recognition in High-Resolution Optical Images, 2

ming71 46 Dec 02, 2022
Implementation of our paper "DMT: Dynamic Mutual Training for Semi-Supervised Learning"

DMT: Dynamic Mutual Training for Semi-Supervised Learning This repository contains the code for our paper DMT: Dynamic Mutual Training for Semi-Superv

Zhengyang Feng 120 Dec 30, 2022
Detectron2-FC a fast construction platform of neural network algorithm based on detectron2

What is Detectron2-FC Detectron2-FC a fast construction platform of neural network algorithm based on detectron2. We have been working hard in two dir

董晋宗 9 Jun 06, 2022
Train a state-of-the-art yolov3 object detector from scratch!

TrainYourOwnYOLO: Building a Custom Object Detector from Scratch This repo let's you train a custom image detector using the state-of-the-art YOLOv3 c

AntonMu 616 Jan 08, 2023
InvTorch: memory-efficient models with invertible functions

InvTorch: Memory-Efficient Invertible Functions This module extends the functionality of torch.utils.checkpoint.checkpoint to work with invertible fun

Modar M. Alfadly 12 May 12, 2022
Latent Execution for Neural Program Synthesis

Latent Execution for Neural Program Synthesis This repo provides the code to replicate the experiments in the paper Xinyun Chen, Dawn Song, Yuandong T

Xinyun Chen 16 Oct 02, 2022
Fast Soft Color Segmentation

Fast Soft Color Segmentation

3 Oct 29, 2022
This repository contains the code for our paper VDA (public in EMNLP2021 main conference)

Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models This repository contains the code for our paper VDA (publ

RUCAIBox 13 Aug 06, 2022
ParmeSan: Sanitizer-guided Greybox Fuzzing

ParmeSan: Sanitizer-guided Greybox Fuzzing ParmeSan is a sanitizer-guided greybox fuzzer based on Angora. Published Work USENIX Security 2020: ParmeSa

VUSec 158 Dec 31, 2022
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

Jiwoon Ahn 337 Dec 15, 2022
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch

MINDs Lab 170 Jan 04, 2023
A simple code to convert image format and channel as well as resizing and renaming multiple images.

Rename-Resize-and-convert-multiple-images A simple code to convert image format and channel as well as resizing and renaming multiple images. This cod

Happy N. Monday 3 Feb 15, 2022
Train neural network for semantic segmentation (deep lab V3) with pytorch in less then 50 lines of code

Train neural network for semantic segmentation (deep lab V3) with pytorch in 50 lines of code Train net semantic segmentation net using Trans10K datas

17 Dec 19, 2022
Pure python implementations of popular ML algorithms.

Minimal ML algorithms This repo includes minimal implementations of popular ML algorithms using pure python and numpy. The purpose of these notebooks

Alexis Gidiotis 3 Jan 10, 2022