Few-Shot Graph Learning for Molecular Property Prediction

Overview

Few-shot Graph Learning for Molecular Property Prediction

Introduction

This is the source code and dataset for the following paper:

Few-shot Graph Learning for Molecular Property Prediction. In WWW 2021.

Contact Zhichun Guo ([email protected]), if you have any questions.

Datasets

The datasets uploaded can be downloaded to train our model directly.

The original datasets are downloaded from Data. We utilize Original_datasets/splitdata.py to split the datasets according to the molecular properties and save them in different files in the Original_datasets/[DatasetName]/new. Then run main.py, the datasets will be automatically preprocessed by loader.py and the preprocessed results will be saved in the Original_datasets/[DatasetName]/new/[PropertyNumber]/propcessed.

Usage

Installation

We used the following Python packages for the development by python 3.6.

- torch = 1.4.0
- torch-geometric = 1.6.1
- torch-scatter = 2.0.4
- torch-sparse = 0.6.1
- scikit-learn = 0.23.2
- tqdm = 4.50.0
- rdkit

Run code

Datasets and k (for k-shot) can be changed in the last line of main.py.

python main.py

Performance

The performance of meta-learning is not stable for some properties. We report two times results and the number of the iteration where we obtain the best results here for your reference.

Dataset k Iteration Property Results k Iteration Property Results
Sider 1 307/599 Si-T1 75.08/75.74 5 561/585 Si-T1 76.16/76.47
Si-T2 69.44/69.34 Si-T2 68.90/69.77
Si-T3 69.90/71.39 Si-T3 72.23/72.35
Si-T4 71.78/73.60 Si-T4 74.40/74.51
Si-T5 79.40/80.50 Si-T5 81.71/81.87
Si-T6 71.59/72.35 Si-T6 74.90/73.34
Ave. 72.87/73.82 Ave. 74.74/74.70
Tox21 1 1271/1415 SR-HS 73.72/73.90 5 1061/882 SR-HS 74.85/74.74
SR-MMP 78.56/79.62 SR-MMP 80.25/80.27
SR-p53 77.50/77.91 SR-p53 78.86/79.14
Ave. 76.59/77.14 Ave. 77.99/78.05

Acknowledgements

The code is implemented based on Strategies for Pre-training Graph Neural Networks.

Reference

@article{guo2021few,
  title={Few-Shot Graph Learning for Molecular Property Prediction},
  author={Guo, Zhichun and Zhang, Chuxu and Yu, Wenhao and Herr, John and Wiest, Olaf and Jiang, Meng and Chawla, Nitesh V},
  journal={arXiv preprint arXiv:2102.07916},
  year={2021}
}
Owner
Zhichun Guo
Zhichun Guo is a Ph.D. student at University of Notre Dame.
Zhichun Guo
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)

Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.

Visual Inference Lab @TU Darmstadt 11 Nov 21, 2022
Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

Rishikesh S 15 Aug 20, 2022
The Environment I built to study Reinforcement Learning + Pokemon Showdown

pokemon-showdown-rl-environment The Environment I built to study Reinforcement Learning + Pokemon Showdown Been a while since I ran this. Think it is

3 Jan 16, 2022
Supporting code for the Neograd algorithm

Neograd This repo supports the paper Neograd: Gradient Descent with a Near-Ideal Learning Rate, which introduces the algorithm "Neograd". The paper an

Michael Zimmer 12 May 01, 2022
Code related to the manuscript "Averting A Crisis In Simulation-Based Inference"

Abstract We present extensive empirical evidence showing that current Bayesian simulation-based inference algorithms are inadequate for the falsificat

Montefiore Artificial Intelligence Research 3 Nov 14, 2022
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow

Hao Lu 18 Nov 05, 2022
fcn by tensorflow

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

9 May 22, 2022
Code for "Long-tailed Distribution Adaptation"

Long-tailed Distribution Adaptation (Accepted in ACM MM2021) This project is built upon BBN. Installation pip install -r requirements.txt Usage Traini

Zhiliang Peng 10 May 18, 2022
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

DID-MDN Density-aware Single Image De-raining using a Multi-stream Dense Network He Zhang, Vishal M. Patel [Paper Link] (CVPR'18) We present a novel d

He Zhang 224 Dec 12, 2022
Tensorflow implementation of MIRNet for Low-light image enhancement

MIRNet Tensorflow implementation of the MIRNet architecture as proposed by Learning Enriched Features for Real Image Restoration and Enhancement. Lanu

Soumik Rakshit 91 Jan 06, 2023
Machine learning and Deep learning models, deploy on telegram (the best social media)

Semi Intelligent BOT The project involves : Classifying fake news Classifying objects such as aeroplane, automobile, bird, cat, deer, dog, frog, horse

MohammadReza Norouzi 5 Mar 06, 2022
GRF: Learning a General Radiance Field for 3D Representation and Rendering

GRF: Learning a General Radiance Field for 3D Representation and Rendering [Paper] [Video] GRF: Learning a General Radiance Field for 3D Representatio

Alex Trevithick 243 Dec 29, 2022
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayes

Intel Labs 210 Jan 04, 2023
Code for "OctField: Hierarchical Implicit Functions for 3D Modeling (NeurIPS 2021)"

OctField(Jittor): Hierarchical Implicit Functions for 3D Modeling Introduction This repository is code release for OctField: Hierarchical Implicit Fun

55 Dec 08, 2022
1st Solution For NeurIPS 2021 Competition on ML4CO Dual Task

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

MEGVII Research 24 Sep 08, 2022
This repo provides the base code for pytorch-lightning and weight and biases simultaneous integration.

Write your model faster with pytorch-lightning-wadb-code-backbone This repository provides the base code for pytorch-lightning and weight and biases s

9 Mar 29, 2022
Adaptation through prediction: multisensory active inference torque control

Adaptation through prediction: multisensory active inference torque control Submitted to IEEE Transactions on Cognitive and Developmental Systems Abst

Cristian Meo 1 Nov 07, 2022
A Self-Supervised Contrastive Learning Framework for Aspect Detection

AspDecSSCL A Self-Supervised Contrastive Learning Framework for Aspect Detection This repository is a pytorch implementation for the following AAAI'21

Tian Shi 30 Dec 28, 2022