Implementation of PersonaGPT Dialog Model

Overview

PersonaGPT

An open-domain conversational agent with many personalities

PersonaGPT is an open-domain conversational agent cpable of decoding personalized and controlled responses based on user input. It is built on the pretrained DialoGPT-medium model, following the GPT-2 architecture. PersonaGPT is fine-tuned on the Persona-Chat dataset, with added special tokens to better distinguish between conversational history and personality traits for dyadic conversations. Furthermore, some active learning was used to train the model to do controlled decoding based on certain "action codes" (e.g., talk about work, ask about music interests).


Personalized Dialog Generation

Also called persona modeling, personalized dialog generation takes as input a set of personality facts and dialog history to generate responses that are (ideally) sensible and diverse, yet consistent with past responses and the given persona profile.

Example

Persona Facts
1 i am 64 years old but feel quite young.
2 i try to eat healthy but limit mcdonalds to once a week.
3 i regret working as a doctor for the last 20 years.
4 my secret hobby is making self-help youtube videos.
5 i've been to spain many times and wish i could go again.
Role Response
Human yo whats good fam?
Bot hello, how are you doing?
Human not bad what you doing today?
Bot eating a lot healthier now that i'm in my 60s
Human i'm more of a fast food guy
Bot me too but i'm very healthy so i try to avoid it
Human what do you do for fun?
Bot i make videos for fun and eat very healthy
Human nice what kind of videos?
Bot i love making videos about self help stuff
Human i think i need some help
Bot what kind of help would you like to get
Human i'm 21 and feel lost in life
Bot i can relate, i'm only 65

Controlled Response Generation

Another feature of PersonaGPT is generating responses that directs conversations toward certain topics of interests. The following is a self-play episode between 2 PersonaGPT agents, one interviews the other.

Bot 2's Persona Facts
1 i am a quiet engineer.
2 i'm single and am looking for love.
3 sadly, i don't have any relatable hobbies.
4 luckily, however, i am tall and athletic.
5 on friday nights, i watch re-runs of the simpsons alone.
Role Action Response
Bot 1 talk about movies hello do you like movies?
Bot 2 - i love the simpsons. how about you?
Bot 1 talk about music i like the walking dead. do you play an instrument?
Bot 2 - yes i play the violin.
Bot 1 ask about marital status are you married or single?
Bot 2 - i am single but i am looking for love.
Bot 1 talk about work my job is working in a factory. what's your occupation?
Bot 2 - engineer. i'm very quiet so no one hears me.
Bot 1 talk about hobbies do you have any hobbies?
Bot 2 - i watch reruns of the simpsons.
Bot 1 ask about favorite food what's your favorite food?
Bot 2 - i love pizza. how about yourself?
Bot 1 ask about pets i also love pizza. do you like animals?
Bot 2 - i have two dogs. what is your occupation?
Bot 1 talk about work i'm a factory worker. what's your dream job?
Bot 2 - i'd love to be a writer one day.

Interactive Environment

To interact with PersonaGPT, run interact.py --mode 0 to manually enter responses and see how the bot responds. You will first be prompted to enter a set of persona facts for your partner and then engage in a short conversation.

Use -turns or --num_turns to adjust the length of conversation (default = 8). To adjust the decoding parameters of PersonaGPT, use --help to bring up available settings to tune. For example, --top_k (default = 10) controls the number of candidate tokens at each decoding step, and --top_p controls the nucleus sampling. See how to generate text from Huggingface for nuances of the GPT decoding process.

To engage in controlled response generation, run interact.py --mode 1. At each turn, you will be prompted to select from a set of topics from which to steer the conversation toward. The output response by PersonaGPT may not always steer the conversation to the topic of interest, depending on the dialog history up to the current turn.


Training

Below are instructions to reconstruct the PersonaGPT from "scratch" (i.e., from pretrained DialoGPT or GPT-2, either of which are feasible as starting pre-trained models).

Requirements:

  • Python 3.6+
  • Pytorch (GPU preferred)
  • transformers
  • dotenv
  • tqdm
  • (optional) apex for fp16 training It is highly recommended that the pytorch and transformers packages are installed under a virtual environment.

After cloning this repository, follow the directions below to set up the training environment.

Instructions:

  1. Go to the .env file and set the save_path to your desired local repository to store model, scheduler and optimizer checkpoints. Point data_path to the ~/data folder of the cloned repository. The .env file also contains the hyperparameter configurations:
epochs = 3
learn_rate = 5e-5
gradient_accumulation_steps = 64
batch_size = 1
weight_decay = 0.0
logging_steps = 10
save_steps = 250

Replace epochs, batch_size, gradient_accumulation_steps and learn_rate with the desired hyperparameters of choice. Please use batch_size = 1 and change gradient accumulation steps to adjust the training batch size. This current repo version does not support parallel batching at the moment (TODO).

  1. Run preprocess_dataset.py to preprocess ~/data/train_both_original_no_cands.txt and ~/data/valid_both_original_no_cands.txt. The original .txt files are obtained from the ConvAI2 Challenge, which may no longer be available since the ConvAI3 challenge has taken place. The ConvAI2 challenge data uses the Persona-Chat dataset which is what is provided under the ~/data folder.

  2. Run train.py to train the PersonaGPT model. Results (e.g., pretrain_loss, persona_loss, ctrl_loss) will be saved under [save_path]/samples/. Model checkpoints are saved under [save_path]/checkpoint/model.

Currently there are 2 training loops, pretrain() and train_loop(). pretrain() first trains model on the Persona-Chat dataset and saves the performance under pretrain_stats. train_loop() then fine-tunes the model on active learning data, which examples of using action codes (e.g., "talk about hobbies", "ask about pets") to do controlled response generation. The pretrained model can be used as as stand-alone dialog model for personalized dialog generation without fine-tuning on the actively learned actions.

  • pretrain_loss: tracks the training loss on Persona-Chat dataset during pretrain().
  • persona_loss: tracks the training loss on Persona-Chat during train_loop().
  • ctrl_loss: tracks the training loss on actively learned action codes during train_loop().

Active Learning

Currently, there are 11 possible turn-level goals that can be used for controlled response generation.

Turn-level Goals
1. ask about family. 4. talk about traveling. 7. talk about music.
2. ask about pets. 5. ask about age and gender. 8. talk about food.
3. talk about work. 6. talk about hobbies. 9. talk about movies.
10. talk about politics. 11. ask about marital status. -

These turn-level goals are handcrafted based on the personachat dataset to cover most of the conversational directions at the turn-level.

To actively learn new turn-level goals, use the convogym repo.


Evaluation

After training, an evaluation loop will run and print out a set of scores saved under eval_stats. Below is a comparison of PersonaGPT vs. other baselines on the Persona-Chat dataset using automatic evaluation metrics. Your results should look something like:

Model Perplexity F1 Score
Seq2seq Baseline [3] 29.8 16.2
Wolf et al. [5] 16.3 19.5
GPT-2 baseline 99.5 5.8
DialoGPT baseline 56.6 12.6
DialoGPT finetuned 11.4 22.7
PersonaGPT 10.2 43.4

Cite Us

Our full paper is now up on arXiv.

@misc{tang2021persona,
      title={Persona Authentication through Generative Dialogue}, 
      author={Fengyi Tang and Lifan Zeng and Fei Wang and Jiayu Zhou},
      year={2021},
      eprint={2110.12949},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

References

  1. Radford, Alec, et al. "Language models are unsupervised multitask learners." OpenAI Blog 1.8 (2019): 9.

  2. Zhang, Yizhe, et al. "Dialogpt: Large-scale generative pre-training for conversational response generation." arXiv preprint arXiv:1911.00536 (2019).

  3. Zhang, Saizheng, et al. "Personalizing dialogue agents: I have a dog, do you have pets too?." arXiv preprint arXiv:1801.07243 (2018).

  4. Dinan et al., "The Second Conversational Intelligence Challenge (ConvAI2)." arXiv preprint arXiv:1902.00098 (2019).

  5. Thomas Wolf et al. "Transfertransfo: A transfer learning approach for neural network based conversational agents." arXiv preprint328arXiv:1901.08149, 2019

Owner
ILLIDAN Lab
Intelligent Data Analytics Lab @ MSU : Creating Large-Scale Machine Learning Algorithms for Big Data Analytics
ILLIDAN Lab
FasterAI: A library to make smaller and faster models with FastAI.

Fasterai fasterai is a library created to make neural network smaller and faster. It essentially relies on common compression techniques for networks

Nathan Hubens 193 Jan 01, 2023
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
Automatic caption evaluation metric based on typicality analysis.

SeMantic and linguistic UndeRstanding Fusion (SMURF) Automatic caption evaluation metric described in the paper "SMURF: SeMantic and linguistic UndeRs

Joshua Feinglass 6 Jan 09, 2022
TensorFlow ROCm port

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

ROCm Software Platform 622 Jan 09, 2023
This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability.

Delayed-cellular-neural-network This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability. There is als

4 Apr 28, 2022
Exporter for Storage Area Network (SAN)

SAN Exporter Prometheus exporter for Storage Area Network (SAN). We all know that each SAN Storage vendor has their own glossary of terms, health/perf

vCloud 32 Dec 16, 2022
Think Big, Teach Small: Do Language Models Distil Occam’s Razor?

Think Big, Teach Small: Do Language Models Distil Occam’s Razor? Software related to the paper "Think Big, Teach Small: Do Language Models Distil Occa

0 Dec 07, 2021
Some simple programs built in Python: webcam with cv2 that detects eyes and face, with grayscale filter

Programas en Python Algunos programas simples creados en Python: 📹 Webcam con c

Madirex 1 Feb 15, 2022
This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch.

MPDL---TODO This repository is an implementation of our NeurIPS 2021 paper (Stylized Dialogue Generation with Multi-Pass Dual Learning) in PyTorch. Ci

CodebaseLi 3 Nov 27, 2022
Learning High-Speed Flight in the Wild

Learning High-Speed Flight in the Wild This repo contains the code associated to the paper Learning Agile Flight in the Wild. For more information, pl

Robotics and Perception Group 391 Dec 29, 2022
My freqtrade strategies

My freqtrade-strategies Hi there! This is repo for my freqtrade-strategies. My name is Ilya Zelenchuk, I'm a lecturer at the SPbU university (https://

171 Dec 05, 2022
A tensorflow implementation of an HMM layer

tensorflow_hmm Tensorflow and numpy implementations of the HMM viterbi and forward/backward algorithms. See Keras example for an example of how to use

Zach Dwiel 283 Oct 19, 2022
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
An efficient and easy-to-use deep learning model compression framework

TinyNeuralNetwork 简体中文 TinyNeuralNetwork is an efficient and easy-to-use deep learning model compression framework, which contains features like neura

Alibaba 441 Dec 25, 2022
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
Pytorch implementation of our paper under review -- 1xN Pattern for Pruning Convolutional Neural Networks

1xN Pattern for Pruning Convolutional Neural Networks (paper) . This is Pytorch re-implementation of "1xN Pattern for Pruning Convolutional Neural Net

Mingbao Lin (林明宝) 29 Nov 29, 2022
It's a implement of this paper:Relation extraction via Multi-Level attention CNNs

Relation Classification via Multi-Level Attention CNNs It's a implement of this paper:Relation Classification via Multi-Level Attention CNNs. Training

Aybss 2 Nov 04, 2022
Hysterese plugin with two temperature offset areas

craftbeerpi4 plugin OffsetHysterese Temperatur-Steuerungs-Plugin mit zwei tempereaturbereich abhängigen Offsets. Installation sudo pip3 install https:

HappyHibo 1 Dec 21, 2021
atmaCup #11 の Public 4th / Pricvate 5th Solution のリポジトリです。

#11 atmaCup 2021-07-09 ~ 2020-07-21 に行われた #11 [初心者歓迎! / 画像編] atmaCup のリポジトリです。結果は Public 4th / Private 5th でした。 フレームワークは PyTorch で、実装は pytorch-image-m

Tawara 12 Apr 07, 2022
O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis

O-CNN This repository contains the implementation of our papers related with O-CNN. The code is released under the MIT license. O-CNN: Octree-based Co

Microsoft 607 Dec 28, 2022