An efficient and easy-to-use deep learning model compression framework

Overview

TinyNeuralNetwork

简体中文

TinyNeuralNetwork is an efficient and easy-to-use deep learning model compression framework, which contains features like neural architecture search, pruning, quantization, model conversion and etc. It has been utilized for the deployment on devices such as Tmall Genie, Haier TV, Youku video, face recognition check-in machine, and etc, which equips over 10 million IoT devices with AI capability.

Installation

Python >= 3.6, PyTorch >= 1.4( PyTorch >= 1.6 if quantization-aware training is involved )

# Install the TinyNeuralNetwork framework
git clone https://github.com/alibaba/TinyNeuralNetwork.git
cd TinyNeuralNetwork
python setup.py install

# Alternatively, you may try the one-liner
pip install git+https://github.com/alibaba/TinyNeuralNetwork.git

Basic modules

  • Computational graph capture: The Graph Tracer in TinyNeuralNetwork captures connectivity of PyTorch operators, which automates pruning and model quantization. It also supports code generation from PyTorch models to equivalent model description files (e.g. models.py).
  • Dependency resolving: Modifying an operator often causes mismatch in subgraph, i.e. mismatch with other dependent operators. The Graph Modifier in TinyNeuralNetwork handles the mismatchs automatically within and between subgraphs to automate the computational graph modification.
  • Pruner: OneShot (L1, L2, FPGM), ADMM, NetAdapt, Gradual, End2End and other pruning algorithms have been implemented and will be opened gradually.
  • Quantization-aware training: TinyNeuralNetwork uses PyTorch's QAT as the backend (we also support simulated bfloat16 training) and optimizes its usability with automating the fusion of operators and quantization of computational graphs (the official implementation requires manual implementation by the user, which is a huge workload).
  • Model conversion: TinyNeuralNetwork supports conversion of floating-point and quantized PyTorch models to TFLite models for end-to-end deployment. Architecture

Project architecture

  • examples: Provides examples of each module
  • models: Provides pre-trained models for getting quickstart
  • tests: Unit tests
  • tinynn: Code for model compression
    • graph : Foundation for computational graph capture, resolving, quantization, code generation, mask management, and etc
    • prune : Pruning algorithms
    • converter : Model converter
    • util: Utility classes

RoadMap

  • Nov. 2021: A new pruner with adaptive sparsity
  • Dec. 2021: Model compression for Transformers

Frequently Asked Questions

Because of the high complexity and frequent updates of PyTorch, we cannot ensure that all cases are covered through automated testing. When you encounter problems You can check out the FAQ, or join the Q&A group in DingTalk via the QR Code below.

img.png

Owner
Alibaba
Alibaba Open Source
Alibaba
Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"

Note: this repo has been discontinued, please check code for newer version of the paper here Weight Normalized GAN Code for the paper "On the Effects

Sitao Xiang 182 Sep 06, 2021
Tensorflow Implementation of ECCV'18 paper: Multimodal Human Motion Synthesis

MT-VAE for Multimodal Human Motion Synthesis This is the code for ECCV 2018 paper MT-VAE: Learning Motion Transformations to Generate Multimodal Human

Xinchen Yan 36 Oct 02, 2022
*ObjDetApp* deploys a pytorch model for object detection

*ObjDetApp* deploys a pytorch model for object detection

Will Chao 1 Dec 26, 2021
Time Delayed NN implemented in pytorch

Pytorch Time Delayed NN Time Delayed NN implemented in PyTorch. Usage kernels = [(1, 25), (2, 50), (3, 75), (4, 100), (5, 125), (6, 150)] tdnn = TDNN

Daniil Gavrilov 79 Aug 04, 2022
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi

79 Jan 06, 2023
Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness

Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness This repository contains the code used for the exper

H.R. Oosterhuis 28 Nov 29, 2022
Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

isvd Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning If you find this code useful, you may cite us as: @inprocee

Sami Abu-El-Haija 16 Jan 08, 2023
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 864 Dec 30, 2022
Voxel-based Network for Shape Completion by Leveraging Edge Generation (ICCV 2021, oral)

Voxel-based Network for Shape Completion by Leveraging Edge Generation This is the PyTorch implementation for the paper "Voxel-based Network for Shape

10 Dec 04, 2022
MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction This is the official implementation for the ICCV 2021 paper Learning Sign

110 Dec 20, 2022
Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS 2021), and the code to generate simulation results.

Scalable Intervention Target Estimation in Linear Models Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS

0 Oct 25, 2021
Official Pytorch implementation for AAAI2021 paper (RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning)

RSPNet Official Pytorch implementation for AAAI2021 paper "RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning" [Suppleme

35 Jun 24, 2022
An automated algorithm to extract the linear blend skinning (LBS) from a set of example poses

Dem Bones This repository contains an implementation of Smooth Skinning Decomposition with Rigid Bones, an automated algorithm to extract the Linear B

Electronic Arts 684 Dec 26, 2022
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022
This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework

neon_course This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework. For more information, see

Nervana 92 Jan 03, 2023
O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis

O-CNN This repository contains the implementation of our papers related with O-CNN. The code is released under the MIT license. O-CNN: Octree-based Co

Microsoft 607 Dec 28, 2022
[CVPR2021] DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets

DoDNet This repo holds the pytorch implementation of DoDNet: DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datase

116 Dec 12, 2022
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)

Minimal code and simple experiments to play with Denoising Diffusion Probabilist

Rithesh Kumar 16 Oct 06, 2022
Marine debris detection with commercial satellite imagery and deep learning.

Marine debris detection with commercial satellite imagery and deep learning. Floating marine debris is a global pollution problem which threatens mari

Inter Agency Implementation and Advanced Concepts 56 Dec 16, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022