MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

Related tags

Deep LearningMVSDF
Overview

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

Intro

This is the official implementation for the ICCV 2021 paper Learning Signed Distance Field for Multi-view Surface Reconstruction

In this work, we introduce a novel neural surface reconstruction framework that leverages the knowledge of stereo matching and feature consistency to optimize the implicit surface representation. More specifically, we apply a signed distance field (SDF) and a surface light field to represent the scene geometry and appearance respectively. The SDF is directly supervised by geometry from stereo matching, and is refined by optimizing the multi-view feature consistency and the fidelity of rendered images. Our method is able to improve the robustness of geometry estimation and support reconstruction of complex scene topologies. Extensive experiments have been conducted on DTU, EPFL and Tanks and Temples datasets. Compared to previous state-of-the-art methods, our method achieves better mesh reconstruction in wide open scenes without masks as input.

How to Use

Environment Setup

The code is tested in the following environment (manually installed packages only). The newer version of the packages should also be fine.

dependencies:
  - cudatoolkit=10.2.89
  - numpy=1.19.2
  - python=3.8.8
  - pytorch=1.7.1
  - tqdm=4.60.0
  - pip:
    - cvxpy==1.1.12
    - gputil==1.4.0
    - imageio==2.9.0
    - open3d==0.13.0
    - opencv-python==4.5.1.48
    - pyhocon==0.3.57
    - scikit-image==0.18.3
    - scikit-learn==0.24.2
    - trimesh==3.9.13
    - pybind11==2.9.0

Data Preparation

Download preprocessed DTU datasets from here

Training

cd code
python training/exp_runner.py --data_dir <DATA_DIR>/scan<SCAN>/imfunc4 --batch_size 8 --nepoch 1800 --expname dtu_<SCAN>

The results will be written in exps/mvsdf_dtu_ .

Trained Models

Download trained models and put them in exps folder. This set of models achieve the following results.

Chamfer PSNR
24 0.846 24.67
37 1.894 20.15
40 0.895 25.15
55 0.435 23.19
63 1.067 26.24
65 0.903 26.9
69 0.746 26.54
83 1.241 25.15
97 1.009 25.71
105 1.320 26.48
106 0.867 28.81
110 0.842 23.16
114 0.340 27.51
118 0.472 28.46
122 0.466 27.71
Mean 0.890 25.72

Testing

python evaluation/eval.py --data_dir <DATA_DIR>/scan<SCAN>/imfunc4 --expname dtu_<SCAN> [--eval_rendering]

add --eval_rendering flag to generate and evaluate rendered images. The results will be written in evals/mvsdf_dtu_ .

Trimming

cd mesh_cut
python setup.py build_ext -i  # compile
python mesh_cut.py 
    
    
      [--thresh 15 --smooth 10]

    
   

Note that this part of code can only be used for research purpose. Please refer to mesh_cut/IBFS/license.txt

Evaluation

Apart from the official implementation, you can also use my re-implemented evaluation script.

Citation

If you find our work useful in your research, please kindly cite

@article{zhang2021learning,
	title={Learning Signed Distance Field for Multi-view Surface Reconstruction},
	author={Zhang, Jingyang and Yao, Yao and Quan, Long},
	journal={International Conference on Computer Vision (ICCV)},
	year={2021}
}
The toolkit to generate auto labeled datasets

Ozeu Ozeu is the toolkit to autolabal dataset for instance segmentation. You can generate datasets labaled with segmentation mask and bounding box fro

Xiong Jie 28 Mar 28, 2022
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
Intrusion Test Tool with Python

P3ntsT00L Uma ferramenta escrita em Python, feita para Teste de intrusão. Requisitos ter o python 3.9.8 instalado em sua máquina. ter a git instalada

josh washington 2 Dec 27, 2021
YOLOX + ROS(1, 2) object detection package

YOLOX + ROS(1, 2) object detection package

Ar-Ray 158 Dec 21, 2022
Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.

Deep Constrained Least Squares for Blind Image Super-Resolution [Paper] This is the official implementation of 'Deep Constrained Least Squares for Bli

MEGVII Research 141 Dec 30, 2022
Constraint-based geometry sketcher for blender

Constraint-based sketcher addon for Blender that allows to create precise 2d shapes by defining a set of geometric constraints like tangent, distance,

1.7k Dec 31, 2022
This is a TensorFlow implementation for C2-Rec

This is a TensorFlow implementation for C2-Rec We refer to the repo SASRec. Requirements requirement.txt Datasets This repo includes Amazon Beauty dat

7 Nov 14, 2022
PyTorch implementation of Convolutional Neural Fabrics http://arxiv.org/abs/1606.02492

PyTorch implementation of Convolutional Neural Fabrics arxiv:1606.02492 There are some minor differences: The raw image is first convolved, to obtain

Anuvabh Dutt 25 Dec 22, 2021
The implementation of the CVPR2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes"

STAR-FC This code is the implementation for the CVPR 2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes" 🌟 🌟 . 🎓 Re

Shuai Shen 87 Dec 28, 2022
Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Tony Z. Zhao 224 Dec 28, 2022
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022
Hand tracking demo for DIY Smart Glasses with a remote computer doing the work

CameraStream This is a demonstration that streams the image from smartglasses to a pc, does the hand recognition on the remote pc and streams the proc

Teemu Laurila 20 Oct 13, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023
Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis

HAABSAStar Code for "Adversarial Training for a Hybrid Approach to Aspect-Based Sentiment Analysis". This project builds on the code from https://gith

1 Sep 14, 2020
AdaDM: Enabling Normalization for Image Super-Resolution

AdaDM AdaDM: Enabling Normalization for Image Super-Resolution. You can apply BN, LN or GN in SR networks with our AdaDM. Pretrained models (EDSR*/RDN

58 Jan 08, 2023
CvT2DistilGPT2 is an encoder-to-decoder model that was developed for chest X-ray report generation.

CvT2DistilGPT2 Improving Chest X-Ray Report Generation by Leveraging Warm-Starting This repository houses the implementation of CvT2DistilGPT2 from [1

The Australian e-Health Research Centre 21 Dec 28, 2022
Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition

Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition How Fast Compare to Other Zero-Shot NAS Proxies on CIFAR-10/100 Pre-trained Model

190 Dec 29, 2022
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022
A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.

Minimal Body A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image. The model file is only 51.2 MB and runs a

Yuxiao Zhou 49 Dec 05, 2022