A small library for creating and manipulating custom JAX Pytree classes

Overview

Treeo

A small library for creating and manipulating custom JAX Pytree classes

  • Light-weight: has no dependencies other than jax.
  • Compatible: Treeo Tree objects are compatible with any jax function that accepts Pytrees.
  • Standards-based: treeo.field is built on top of python's dataclasses.field.
  • Flexible: Treeo is compatible with both dataclass and non-dataclass classes.

Treeo lets you easily create class-based Pytrees so your custom objects can easily interact seamlessly with JAX. Uses of Treeo can range from just creating simple simple JAX-aware utility classes to using it as the core abstraction for full-blown frameworks. Treeo was originally extracted from the core of Treex and shares a lot in common with flax.struct.

Documentation | User Guide

Installation

Install using pip:

pip install treeo

Basics

With Treeo you can easily define your own custom Pytree classes by inheriting from Treeo's Tree class and using the field function to declare which fields are nodes (children) and which are static (metadata):

import treeo as to

@dataclass
class Person(to.Tree):
    height: jnp.array = to.field(node=True) # I am a node field!
    name: str = to.field(node=False) # I am a static field!

field is just a wrapper around dataclasses.field so you can define your Pytrees as dataclasses, but Treeo fully supports non-dataclass classes as well. Since all Tree instances are Pytree they work with the various functions from thejax library as expected:

p = Person(height=jnp.array(1.8), name="John")

# Trees can be jitted!
jax.jit(lambda person: person)(p) # Person(height=array(1.8), name='John')

# Trees can be mapped!
jax.tree_map(lambda x: 2 * x, p) # Person(height=array(3.6), name='John')

Kinds

Treeo also include a kind system that lets you give semantic meaning to fields (what a field represents within your application). A kind is just a type you pass to field via its kind argument:

class Parameter: pass
class BatchStat: pass

class BatchNorm(to.Tree):
    scale: jnp.ndarray = to.field(node=True, kind=Parameter)
    mean: jnp.ndarray = to.field(node=True, kind=BatchStat)

Kinds are very useful as a filtering mechanism via treeo.filter:

model = BatchNorm(...)

# select only Parameters, mean is filtered out
params = to.filter(model, Parameter) # BatchNorm(scale=array(...), mean=Nothing)

Nothing behaves like None in Python, but it is a special value that is used to represent the absence of a value within Treeo.

Treeo also offers the merge function which lets you rejoin filtered Trees with a logic similar to Python dict.update but done recursively:

def loss_fn(params, model, ...):
    # add traced params to model
    model = to.merge(model, params)
    ...

# gradient only w.r.t. params
params = to.filter(model, Parameter) # BatchNorm(scale=array(...), mean=Nothing)
grads = jax.grad(loss_fn)(params, model, ...)

For a more in-depth tour check out the User Guide.

Examples

A simple Tree

from dataclasses import dataclass
import treeo as to

@dataclass
class Character(to.Tree):
    position: jnp.ndarray = to.field(node=True)    # node field
    name: str = to.field(node=False, opaque=True)  # static field

character = Character(position=jnp.array([0, 0]), name='Adam')

# character can freely pass through jit
@jax.jit
def update(character: Character, velocity, dt) -> Character:
    character.position += velocity * dt
    return character

character = update(character velocity=jnp.array([1.0, 0.2]), dt=0.1)

A Stateful Tree

from dataclasses import dataclass
import treeo as to

@dataclass
class Counter(to.Tree):
    n: jnp.array = to.field(default=jnp.array(0), node=True) # node
    step: int = to.field(default=1, node=False) # static

    def inc(self):
        self.n += self.step

counter = Counter(step=2) # Counter(n=jnp.array(0), step=2)

@jax.jit
def update(counter: Counter):
    counter.inc()
    return counter

counter = update(counter) # Counter(n=jnp.array(2), step=2)

# map over the tree

Full Example - Linear Regression

import jax
import jax.numpy as jnp
import matplotlib.pyplot as plt
import numpy as np

import treeo as to


class Linear(to.Tree):
    w: jnp.ndarray = to.node()
    b: jnp.ndarray = to.node()

    def __init__(self, din, dout, key):
        self.w = jax.random.uniform(key, shape=(din, dout))
        self.b = jnp.zeros(shape=(dout,))

    def __call__(self, x):
        return jnp.dot(x, self.w) + self.b


@jax.value_and_grad
def loss_fn(model, x, y):
    y_pred = model(x)
    loss = jnp.mean((y_pred - y) ** 2)

    return loss


def sgd(param, grad):
    return param - 0.1 * grad


@jax.jit
def train_step(model, x, y):
    loss, grads = loss_fn(model, x, y)
    model = jax.tree_map(sgd, model, grads)

    return loss, model


x = np.random.uniform(size=(500, 1))
y = 1.4 * x - 0.3 + np.random.normal(scale=0.1, size=(500, 1))

key = jax.random.PRNGKey(0)
model = Linear(1, 1, key=key)

for step in range(1000):
    loss, model = train_step(model, x, y)
    if step % 100 == 0:
        print(f"loss: {loss:.4f}")

X_test = np.linspace(x.min(), x.max(), 100)[:, None]
y_pred = model(X_test)

plt.scatter(x, y, c="k", label="data")
plt.plot(X_test, y_pred, c="b", linewidth=2, label="prediction")
plt.legend()
plt.show()
Comments
  • Use field kinds within tree_map

    Use field kinds within tree_map

    Firstly, thanks for creating Treeo - it's a fantastic package.

    Is there a way to use methods defined within a field's kind object within a tree_map call? For example, consider the following MWE

    import jax.numpy as jnp
    
    class Parameter:
        def transform(self):
            return jnp.exp(self)
    
    
    @dataclass
    class Model(to.Tree):
        lengthscale: jnp.array = to.field(
            default=jnp.array([1.0]), node=True, kind=Parameter
        )
    

    is there a way that I could do something similar to the following pseudocode snippet:

    m = Model()
    jax.tree_map(lamdba x: x.transform(), to.filter(m, Parameter))
    
    opened by thomaspinder 10
  • Stacking of Treeo.Tree

    Stacking of Treeo.Tree

    I'm running into some issues when trying to stack a list of Treeo.Tree objects into a single object. I've made a short example:

    from dataclasses import dataclass
    
    import jax
    import jax.numpy as jnp
    import treeo as to
    
    @dataclass
    class Person(to.Tree):
        height: jnp.array = to.field(node=True) # I am a node field!
        age_static: jnp.array = to.field(node=False) # I am a static field!, I should not be updated.
        name: str = to.field(node=False) # I am a static field!
    
    persons = [
        Person(height=jnp.array(1.8), age_static=jnp.array(25.), name="John"),
        Person(height=jnp.array(1.7), age_static=jnp.array(100.), name="Wald"),
        Person(height=jnp.array(2.1), age_static=jnp.array(50.), name="Karen")
    ]
    
    # Stack (struct of arrays instead of list of structs)
    jax.tree_map(lambda *values: jnp.stack(values, axis=0), *persons)
    

    However, this fails with the following exception:

    ---------------------------------------------------------------------------
    ValueError                                Traceback (most recent call last)
    Cell In[1], line 18
         11     name: str = to.field(node=False) # I am a static field!
         13 persons = [
         14     Person(height=jnp.array(1.8), age_static=jnp.array(25.), name="John"),
         15     Person(height=jnp.array(1.7), age_static=jnp.array(100.), name="Wald"),
         16     Person(height=jnp.array(2.1), age_static=jnp.array(50.), name="Karen")
         17 ]
    ---> 18 jax.tree_map(lambda *values: jnp.stack(values, axis=0), *persons)
    
    File ~/workspace/lcms_polymer_model/env/env_conda_local/lcms_polymer_model_env/lib/python3.10/site-packages/jax/_src/tree_util.py:199, in tree_map(f, tree, is_leaf, *rest)
        166 """Maps a multi-input function over pytree args to produce a new pytree.
        167 
        168 Args:
       (...)
        196   [[5, 7, 9], [6, 1, 2]]
        197 """
        198 leaves, treedef = tree_flatten(tree, is_leaf)
    --> 199 all_leaves = [leaves] + [treedef.flatten_up_to(r) for r in rest]
        200 return treedef.unflatten(f(*xs) for xs in zip(*all_leaves))
    
    File ~/workspace/lcms_polymer_model/env/env_conda_local/lcms_polymer_model_env/lib/python3.10/site-packages/jax/_src/tree_util.py:199, in <listcomp>(.0)
        166 """Maps a multi-input function over pytree args to produce a new pytree.
        167 
        168 Args:
       (...)
        196   [[5, 7, 9], [6, 1, 2]]
        197 """
        198 leaves, treedef = tree_flatten(tree, is_leaf)
    --> 199 all_leaves = [leaves] + [treedef.flatten_up_to(r) for r in rest]
        200 return treedef.unflatten(f(*xs) for xs in zip(*all_leaves))
    
    ValueError: Mismatch custom node data: {'_field_metadata': {'height': <treeo.types.FieldMetadata object at 0x7fb8b898ba00>, 'age_static': <treeo.types.FieldMetadata object at 0x7fb8b90c0a90>, 'name': <treeo.types.FieldMetadata object at 0x7fb8b8bf9db0>, '_field_metadata': <treeo.types.FieldMetadata object at 0x7fb8b89b56f0>, '_factory_fields': <treeo.types.FieldMetadata object at 0x7fb8b89b5750>, '_default_field_values': <treeo.types.FieldMetadata object at 0x7fb8b89b5660>, '_subtrees': <treeo.types.FieldMetadata object at 0x7fb8b89b5720>}, 'age_static': DeviceArray(25., dtype=float32, weak_type=True), 'name': 'John'} != {'_field_metadata': {'height': <treeo.types.FieldMetadata object at 0x7fb8b898ba00>, 'age_static': <treeo.types.FieldMetadata object at 0x7fb8b90c0a90>, 'name': <treeo.types.FieldMetadata object at 0x7fb8b8bf9db0>, '_field_metadata': <treeo.types.FieldMetadata object at 0x7fb8b89b56f0>, '_factory_fields': <treeo.types.FieldMetadata object at 0x7fb8b89b5750>, '_default_field_values': <treeo.types.FieldMetadata object at 0x7fb8b89b5660>, '_subtrees': <treeo.types.FieldMetadata object at 0x7fb8b89b5720>}, 'age_static': DeviceArray(100., dtype=float32, weak_type=True), 'name': 'Wald'}; value: Person(height=DeviceArray(1.7, dtype=float32, weak_type=True), age_static=DeviceArray(100., dtype=float32, weak_type=True), name='Wald').
    

    Versions used:

    • JAX: 0.3.20
    • Treeo: 0.0.10

    From a certain perspective this is expected because jax.tree_map does not apply to static (node=False) fields. So in this sense, this might not be really an issue with Treeo. However, I'm looking for some guidance on how to still be able to stack objects like this with static fields. Has anyone has tried something similar and come up with a nice solution?

    opened by peterroelants 3
  • Jitting twice for a class method

    Jitting twice for a class method

    import jax
    import jax.numpy as jnp
    import treeo as to
    
    class A(to.Tree):
        X: jnp.array = to.field(node=True)
        
        def __init__(self):
            self.X = jnp.ones((50, 50))
    
        @jax.jit
        def f(self, Y):
            return jnp.sum(Y ** 2) * jnp.sum(self.X ** 2)
    
    Y = jnp.ones(2)
    for i in range(5):
        print(A.f._cache_size())
        a = A()
        a.f(Y)
    

    The output of the above is 0 1 2 2 2 with jax 0.3.15. No idea what's happening. It seems to work fine with 0.3.10 and the output is 0 1 1 1 1. Thanks.

    opened by pipme 2
  • Change Mutable API

    Change Mutable API

    Changes

    • Previously self.mutable(*args, method=method, **kwargs)
    • Is now...... self.mutable(method=method)(*args, **kwargs)
    • Opaque API is removed
    • inplace argument is now only available for apply.
    • Immutable.{mutable, toplevel_mutable} methods are removed.
    fix 
    opened by cgarciae 1
  • Improve mutability support

    Improve mutability support

    Changes

    • Fixes issues with immutability in compact context
    • The make_mutable context manager and the mutable function now expose a toplevel_only: bool argument.
    • Adds a _get_unbound_method private function in utils.
    feature 
    opened by cgarciae 1
  • Bug Fixes from 0.0.11

    Bug Fixes from 0.0.11

    Changes

    • Fixes an issues that disabled mutability inside __init__ for Immutable classes when TreeMeta's `constructor method is overloaded.
    • Fixes the Apply.apply mixin method.

    Closes cgarciae/treex#68

    fix 
    opened by cgarciae 1
  • Adds support for immutable Trees

    Adds support for immutable Trees

    Changes

    • Adds an Immutable mixin that can make Trees effectively immutable (as far as python permits).
    • Immutable contains the .replace and .mutable methods that let you manipulate state in a functionally pure fashion.
    • Adds the mutable function transformation / decorator which lets you turn function that perform mutable operation into pure functions.
    opened by cgarciae 1
  • Add the option of using add_field_info inside map

    Add the option of using add_field_info inside map

    This PR addresses the comments made in #2 . An additional argument is created within map to allow for a field_info boolean flag to passed. When true, jax.tree_map is carried out under the with add_field_info(): context manager.

    Tests have been added to test for correct function application on classes contain Trees with mixed kind types.

    A brief section has been added to the documentation to reflect the above changes.

    opened by thomaspinder 1
  • Get all unique kinds

    Get all unique kinds

    Hi,

    Is there a way that I can get a list of all the unique kinds within a nested dataclass? For example:

    class KindOne: pass
    class KindTwo: pass
    
    @dataclass
    class SubModel(to.Tree):
        parameter: jnp.array = to.field(
            default=jnp.array([1.0]), node=True, kind=KindOne
        )
    
    
    @dataclass 
    class Model(to.Tree):
        parameter: jnp.array = to.field(
            default=jnp.array([1.0]), node=True, kind=KindTwo
        )
    
    m = Model()
    
    m.unique_kinds() # [KindOne, KindTwo]
    
    opened by thomaspinder 1
  • Compact

    Compact

    Changes

    • Removes opaque_is_equal, same functionality available through opaque.
    • Adds compact decorator that enable the definition of Tree subnodes at runtime.
    • Adds the Compact mixin that adds the first_run property and the get_field method.
    opened by cgarciae 0
  • Relax jax/jaxlib version constraints

    Relax jax/jaxlib version constraints

    Now that jax 0.3.0 and jaxlib 0.3.0 have been released the version constraints in pyproject.toml are outdated.

    https://github.com/cgarciae/treeo/blob/a402f3f69557840cfbee4d7804964b8e2c47e3f7/pyproject.toml#L16-L17

    This corresponds to the version constraint jax<0.3.0,>=0.2.18 (https://python-poetry.org/docs/dependency-specification/#caret-requirements). Now that jax v0.3.0 has been released (https://github.com/google/jax/releases/tag/jax-v0.3.0) this doesn't work with the latest version. I think the same applies to jaxlib as well, since it also got upgraded to v0.3.0 (https://github.com/google/jax/releases/tag/jaxlib-v0.3.0).

    opened by samuela 4
  • TracedArrays treated as nodes by default

    TracedArrays treated as nodes by default

    Current for convenience all non-Tree fields which are not declared are set to static fields as most fields actually are, however, for more complex applications a Traced Array might actually be passed when a static field is usually expected.

    A simple solution is change the current node policy to treat any field containing a TracedArray as a node, this would be the same as the current policy for Tree fields.

    opened by cgarciae 0
Releases(0.2.1)
Owner
Cristian Garcia
ML Engineer at Quansight, working on Treex and Elegy.
Cristian Garcia
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
source code of Adversarial Feedback Loop Paper

Adversarial Feedback Loop [ArXiv] [project page] Official repository of Adversarial Feedback Loop paper Firas Shama, Roey Mechrez, Alon Shoshan, Lihi

17 Jul 20, 2022
Official PyTorch implementation of "Evolving Search Space for Neural Architecture Search"

Evolving Search Space for Neural Architecture Search Usage Install all required dependencies in requirements.txt and replace all ..path/..to in the co

Yuanzheng Ci 10 Oct 24, 2022
Official Code Implementation of the paper : XAI for Transformers: Better Explanations through Conservative Propagation

Official Code Implementation of The Paper : XAI for Transformers: Better Explanations through Conservative Propagation For the SST-2 and IMDB expermin

Ameen Ali 23 Dec 30, 2022
Awesome-google-colab - Google Colaboratory Notebooks and Repositories

Unofficial Google Colaboratory Notebook and Repository Gallery Please contact me to take over and revamp this repo (it gets around 30k views and 200k

Derek Snow 1.2k Jan 03, 2023
SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches

SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches [Paper]  [Project Page]  [Interactive Demo]  [Supplementary Material]        Usag

215 Dec 25, 2022
PyTorch implementation of the YOLO (You Only Look Once) v2

PyTorch implementation of the YOLO (You Only Look Once) v2 The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorc

申瑞珉 (Ruimin Shen) 433 Nov 24, 2022
PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi

PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi PIKA is a lightweight speech processing toolkit based on Pytorch and (Py)

336 Nov 25, 2022
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
Pytorch implementation of Zero-DCE++

Zero-DCE++ You can find more details here: https://li-chongyi.github.io/Proj_Zero-DCE++.html. You can find the details of our CVPR version: https://li

Chongyi Li 157 Dec 23, 2022
A simple pygame dino game which can also be trained and played by a NEAT KI

Dino Game AI Game The game itself was developed with the Pygame module pip install pygame You can also play it yourself by making the dino jump with t

Kilian Kier 7 Dec 05, 2022
KIDA: Knowledge Inheritance in Data Aggregation

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

24 Sep 08, 2022
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

[CVPRW 2021] - Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation

Anirudh S Chakravarthy 6 May 03, 2022
Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

DSL Project page: https://sites.google.com/view/dsl-ram-lab/ Monocular Direct Sparse Localization in a Prior 3D Surfel Map Authors: Haoyang Ye, Huaiya

Haoyang Ye 93 Nov 30, 2022
Lolviz - A simple Python data-structure visualization tool for lists of lists, lists, dictionaries; primarily for use in Jupyter notebooks / presentations

lolviz By Terence Parr. See Explained.ai for more stuff. A very nice looking javascript lolviz port with improvements by Adnan M.Sagar. A simple Pytho

Terence Parr 785 Dec 30, 2022
Awesome AI Learning with +100 AI Cheat-Sheets, Free online Books, Top Courses, Best Videos and Lectures, Papers, Tutorials, +99 Researchers, Premium Websites, +121 Datasets, Conferences, Frameworks, Tools

All about AI with Cheat-Sheets(+100 Cheat-sheets), Free Online Books, Courses, Videos and Lectures, Papers, Tutorials, Researchers, Websites, Datasets

Niraj Lunavat 1.2k Jan 01, 2023
Deep-Learning-Image-Captioning - Implementing convolutional and recurrent neural networks in Keras to generate sentence descriptions of images

Deep Learning - Image Captioning with Convolutional and Recurrent Neural Nets ========================================================================

23 Apr 06, 2022