Official Implementation and Dataset of "PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency", CVPR 2021

Related tags

Deep LearningPPR10K
Overview

Portrait Photo Retouching with PPR10K

Paper | Supplementary Material

PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency
Jie Liang*, Hui Zeng*, Miaomiao Cui, Xuansong Xie and Lei Zhang.
In CVPR 2021.

The proposed Portrait Photo Retouching dataset (PPR10K) is a large-scale and diverse dataset that contains:

  • 11,161 high-quality raw portrait photos (resolutions from 4K to 8K) in 1,681 groups;
  • 3 versions of manual retouched targets of all photos given by 3 expert retouchers;
  • full resolution human-region masks of all photos.

Samples

sample_images

Two example groups of photos from the PPR10K dataset. Top: the raw photos; Bottom: the retouched results from expert-a and the human-region masks. The raw photos exhibit poor visual quality and large variance in subject views, background contexts, lighting conditions and camera settings. In contrast, the retouched results demonstrate both good visual quality (with human-region priority) and group-level consistency.

This dataset is first of its kind to consider the two special and practical requirements of portrait photo retouching task, i.e., Human-Region Priority and Group-Level Consistency. Three main challenges are expected to be tackled in the follow-up researches:

  • Flexible and content-adaptive models for such a diverse task regarding both image contents and lighting conditions;
  • Highly efficient models to process practical resolution from 4K to 8K;
  • Robust and stable models to meet the requirement of group-level consistency.

Agreement

  • All files in the PPR10K dataset are available for non-commercial research purposes only.
  • You agree not to reproduce, duplicate, copy, sell, trade, resell or exploit for any commercial purposes, any portion of the images and any portion of derived data.

Overview

All data is hosted on GoogleDrive, OneDrive and 百度网盘 (验证码: mrwn):

Path Size Files Format Description
PPR10K-dataset 406 GB 176,072 Main folder
├  raw 313 GB 11,161 RAW All photos in raw format (.CR2, .NEF, .ARW, etc)
├  xmp_source 130 MB 11,161 XMP Default meta-file of the raw photos in CameraRaw, used in our data augmentation
├  xmp_target_a 130 MB 11,161 XMP CameraRaw meta-file of the raw photos recoding the full adjustments by expert a
├  xmp_target_b 130 MB 11,161 XMP CameraRaw meta-file of the raw photos recoding the full adjustments by expert b
├  xmp_target_c 130 MB 11,161 XMP CameraRaw meta-file of the raw photos recoding the full adjustments by expert c
├  masks_full 697 MB 11,161 PNG Full-resolution human-region masks in binary format
├  masks_360p 56 MB 11,161 PNG 360p human-region masks for fast training and validation
├  train_val_images_tif_360p 91 GB 97894 TIF 360p Source (16 bit tiff, with 5 versions of augmented images) and target (8 bit tiff) images for fast training and validation
├  pretrained_models 268 MB 12 PTH pretrained models for all 3 versions
└  hists 624KB 39 PNG Overall statistics of the dataset

One can directly use the 360p (of 540x360 or 360x540 resolution in sRGB color space) training and validation files (photos, 5 versions of augmented photos and the corresponding human-region masks) we have provided following the settings in our paper (train with the first 8,875 files and validate with the last 2286 files).
Also, see the instructions to customize your data (e.g., augment the training samples regarding illuminations and colors, get photos with higher or full resolutions).

Training and Validating the PPR using 3DLUT

Installation

  • Clone this repo.
git clone https://github.com/csjliang/PPR10K
cd PPR10K/code_3DLUT/
  • Install dependencies.
pip install -r requirements.txt
  • Build. Modify the CUDA path in trilinear_cpp/setup.sh adaptively and
cd trilinear_cpp
sh trilinear_cpp/setup.sh

Training

  • Training without HRP and GLC strategy, save models:
python train.py --data_path [path_to_dataset] --gpu_id [gpu_id] --use_mask False --output_dir [path_to_save_models]
  • Training with HRP and without GLC strategy, save models:
python train.py --data_path [path_to_dataset] --gpu_id [gpu_id] --use_mask True --output_dir [path_to_save_models]
  • Training without HRP and with GLC strategy, save models:
python train_GLC.py --data_path [path_to_dataset] --gpu_id [gpu_id] --use_mask False --output_dir [path_to_save_models]
  • Training with both HRP and GLC strategy, save models:
python train_GLC.py --data_path [path_to_dataset] --gpu_id [gpu_id] --use_mask True --output_dir [path_to_save_models]

Evaluation

  • Generate the retouched results:
python validation.py --data_path [path_to_dataset] --gpu_id [gpu_id] --model_dir [path_to_models]
  • Use matlab to calculate the measures in our paper:
calculate_metrics(source_dir, target_dir, mask_dir)

Pretrained Models

mv your/path/to/pretrained_models/* saved_models/
  • specify the --model_dir and --epoch (-1) to validate or initialize the training using the pretrained models, e.g.,
python validation.py --data_path [path_to_dataset] --gpu_id [gpu_id] --model_dir mask_noglc_a --epoch -1
python train.py --data_path [path_to_dataset] --gpu_id [gpu_id] --use_mask True --output_dir mask_noglc_a --epoch -1

Citation

If you use this dataset or code for your research, please cite our paper.

@inproceedings{jie2021PPR10K,
  title={PPR10K: A Large-Scale Portrait Photo Retouching Dataset with Human-Region Mask and Group-Level Consistency},
  author={Liang, Jie and Zeng, Hui and Cui, Miaomiao and Xie, Xuansong and Zhang, Lei},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021}
}

Related Projects

3D LUT

Contact

Should you have any questions, please contact me via [email protected].

OCRA (Object-Centric Recurrent Attention) source code

OCRA (Object-Centric Recurrent Attention) source code Hossein Adeli and Seoyoung Ahn Please cite this article if you find this repository useful: For

Hossein Adeli 2 Jun 18, 2022
Gin provides a lightweight configuration framework for Python

Gin Config Authors: Dan Holtmann-Rice, Sergio Guadarrama, Nathan Silberman Contributors: Oscar Ramirez, Marek Fiser Gin provides a lightweight configu

Google 1.7k Jan 03, 2023
This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive Selective Coding)

HCSC: Hierarchical Contrastive Selective Coding This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive

YUANFAN GUO 111 Dec 20, 2022
arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

Andrej 671 Dec 31, 2022
1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
'A C2C E-COMMERCE TRUST MODEL BASED ON REPUTATION' Python implementation

Project description A library providing functionalities to calculate reputation and degree of trust on C2C ecommerce platforms. The work is fully base

Davide Bigotti 2 Dec 14, 2022
A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.

ARES This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning rese

Tsinghua Machine Learning Group 377 Dec 20, 2022
Pytorch implementation of Deep Recursive Residual Network for Super Resolution (DRRN)

DRRN-pytorch This is an unofficial implementation of "Deep Recursive Residual Network for Super Resolution (DRRN)", CVPR 2017 in Pytorch. [Paper] You

yun_yang 192 Dec 12, 2022
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)

Unsupervised Depth Completion with Calibrated Backprojection Layers PyTorch implementation of Unsupervised Depth Completion with Calibrated Backprojec

80 Dec 13, 2022
RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.

RITA: a Study on Scaling Up Generative Protein Sequence Models RITA is a family of autoregressive protein models, developed by a collaboration of Ligh

LightOn 69 Dec 22, 2022
python library for invisible image watermark (blind image watermark)

invisible-watermark invisible-watermark is a python library and command line tool for creating invisible watermark over image.(aka. blink image waterm

Shield Mountain 572 Jan 07, 2023
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours

tsp-streamlit Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours.

4 Nov 05, 2022
Data and code from COVID-19 machine learning paper

Machine learning approaches for localized lockdown, subnotification analysis and cases forecasting in São Paulo state counties during COVID-19 pandemi

Sara Malvar 4 Dec 22, 2022
An open-access benchmark and toolbox for electricity price forecasting

epftoolbox The epftoolbox is the first open-access library for driving research in electricity price forecasting. Its main goal is to make available a

97 Dec 05, 2022
A PyTorch implementation of "Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning", IJCAI-21

MERIT A PyTorch implementation of our IJCAI-21 paper Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning. Depen

Graph Analysis & Deep Learning Laboratory, GRAND 32 Jan 02, 2023
SIR model parameter estimation using a novel algorithm for differentiated uniformization.

TenSIR Parameter estimation on epidemic data under the SIR model using a novel algorithm for differentiated uniformization of Markov transition rate m

The Spang Lab 4 Nov 30, 2022
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022
PyTorch code for the paper "Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval".

Complementarity is the King: Multi-modal and Multi-grained Hierarchical Semantic Enhancement Network for Cross-modal Retrieval (M2HSE) PyTorch code fo

Xinlei-Pei 6 Dec 23, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022