Project NII pytorch scripts

Overview

project-NII-pytorch-scripts

By Xin Wang, National Institute of Informatics, since 2021

I am a new pytorch user. If you have any suggestions or questions, pleas email wangxin at nii dot ac dot jp

Table of Contents


1. Note

For tutorials on neural vocoders

Tutorials are available in ./tutorials. Please follow the ./tutorials/README and work in this folder first

cd ./tutorials
head -n 2 README.md
# Hands-on materials for neural vocoders

For other projects

Just follow the rest of the README.

The repository is relatively large. You may use --depth 1 option to skip unnecessary files.

git clone --depth 1 https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts.git

Updates

2022-01-08: upload hn-sinc-nsf + hifi-gan

2022-01-08: upload RawNet2 for anti-spoofing

2. Overview

This repository hosts Pytorch codes for the following projects:

2.1 Neural source-filter waveform model

./project/01-nsf

  1. Cyclic-noise neural source-filter waveform model (NSF)

  2. Harmonic-plus-noise NSF with trainable sinc filter (Hn-sinc-NSF)

  3. Harmonic-plus-noise NSF with fixed FIR filter (Hn-NSF)

  4. Hn-sinc-NSF + HiFiGAN discriminator

All the projects include a pre-trained model on CMU-arctic database (4 speakers) and a demo script to run, train, do inference. Please check ./project/01-nsf/README.

Generated samples from pre-trained models are in ./project/01-nsf/*/__pre_trained/output. If not, please run the demo script to produce waveforms using pre-trained models.

Tutorial on NSF models is also available in ./tutorials

Note that this is the re-implementation of the projects based on CURRENNT. All the papers published so far used CURRENNT implementation.

Many samples can be found on NSF homepage.

2.2 Other neural waveform models

./project/05-nn-vocoders

  1. WaveNet vocoder

  2. WaveGlow

  3. Blow

  4. iLPCNet

All the projects include a pre-trained model and a one-click demo script. Please check ./project/05-nn-vocoders/README.

Generated samples from pre-trained models are in ./project/05-nn-vocoders/*/__pre_trained/output.

Tutorial is also available in ./tutorials

2.3 ASVspoof project with toy example

./project/04-asvspoof2021-toy

It takes time to download ASVspoof2019 database. Therefore, this project demonstrates how to train and evaluate the anti-spoofing model using a toy dataset.

Please try this project before checking other ASVspoof projects below.

A similar project is adopted for ASVspoof2021 LFCC-LCNN baseline, although the LFCC front-end is slightly different.

Please check ./project/04-asvspoof2021-toy/README.

2.4 Speech anti-spoofing for ASVspoof 2019 LA

./project/03-asvspoof-mega

This is for this anti-spoofing project (A Comparative Study on Recent Neural Spoofing Countermeasures for Synthetic Speech Detection, paper on arxiv).

There were 36 systems investigated, each of which was trained and evaluated for 6 rounds with different random seeds.

EER-mintDCF

This project is later extended to a book chapter called A Practical Guide to Logical Access Voice Presentation Attack Detection. Single system using RawNet2 is added, and score fusion is added.

EER-mintDCF

Pre-trained models, scores, training recipes are all available. Please check ./project/03-asvspoof-mega/README.

2.5 (Preliminary) speech anti-spoofing

./project/02-asvspoof

  1. Baseline LFCC + LCNN-binary-classifier (lfcc-lcnn-sigmoid)

  2. LFCC + LCNN + angular softmax (lfcc-lcnn-a-softmax)

  3. LFCC + LCNN + one-class softmax (lfcc-lcnn-ocsoftmax)

  4. LFCC + ResNet18 + one-class softmax (lfcc-restnet-ocsoftmax)

This is a pilot test on ASVspoof2019 LA task. I trained each system for 6 times on various GPU devices (single V100 or P100 card), each time with a different random initial seed. Figure below shows the DET curves for these systems: det_curve

The results vary a lot when simply changing the initial random seeds, even with the same random seed, Pytorch environment, and deterministic algorithm selected. This preliminary test motivated the study in ./project-03-asvspoof-mega.

For LCNN, please check this paper; for LFCC, please check this paper; for one-class softmax in ASVspoof, please check this paper.

3. Python environment

You may use ./env.yml to create the environment:

# create environment
conda env create -f env.yml

# load environment (whose name is pytorch-1.6)
conda activate pytorch-1.6

4. How to use

Take project/01-nsf/cyc-noise-nsf as an example:

# cd into one project
cd project/01-nsf/cyc-noise-nsf-4

# add PYTHONPATH and activate conda environment
source ../../../env.sh 

# run the script
bash 00_demo.sh

The printed info will show what is happening. The script may need 1 day or more to finish.

You may also put the job to the background rather than waiting for the job in front of the terminal:

# run the script in background
bash 00_demo.sh > log_batch 2>&1 &

The above steps will download the CMU-arctic data, run waveform generation using a pre-trained model, and train a new model.

5. Project design and convention

Data format

  • Waveform: 16/32-bit PCM or 32-bit float WAV that can be read by scipy.io.wavfile.read

  • Other data: binary, float-32bit, little endian (numpy dtype ). The data can be read in python by:

# for a data of shape [N, M]
f = open(filepath,'rb')
datatype = np.dtype(('
   ,(M,)))
data = np.fromfile(f,dtype=datatype)
f.close()

I assume data should be stored in c_continuous format (row-major). There are helper functions in ./core_scripts/data_io/io_tools.py to read and write binary data:

# create a float32 data array
import numpy as np
data = np.asarray(np.random.randn(5, 3), dtype=np.float32)

# write to './temp.bin' and read it as data2
import core_scripts.data_io.io_tools as readwrite
readwrite.f_write_raw_mat(data, './temp.bin')
data2 = readwrite.f_read_raw_mat('./temp.bin', 3)

# result should 0
data - data2

More instructions can be found in the Jupyter notebook ./tutorials/c01_data_format.ipynb.

Files in this repository

Name Function
./core_scripts scripts to manage the training process, data io, and so on
./core_modules finished pytorch modules
./sandbox new functions and modules to be test
./project project directories, and each folder correspond to one model for one dataset
./project/*/*/main.py script to load data and run training and inference
./project/*/*/model.py model definition based on Pytorch APIs
./project/*/*/config.py configurations for training/val/test set data

The motivation is to separate the training and inference process, the model definition, and the data configuration. For example:

  • To define a new model, change model.py

  • To run on a new database, change config.py

How the script works

The script starts with main.py and calls different function for model training and inference.

During training:

     <main.py>        Entry point and controller of training process
        |           
   Argument parse     core_scripts/config_parse/arg_parse.py
   Initialization     core_scripts/startup_config.py
   Choose device     
        | 
Initialize & load     core_scripts/data_io/customize_dataset.py
training data set
        |----------|
        .     Load data set   <config.py> 
        .     configuration 
        .          |
        .     Loop over       core_scripts/data_io/customize_dataset.py
        .     data subset
        .          |       
        .          |---------|
        .          .    Load one subset   core_scripts/data_io/default_data_io.py
        .          .         |
        .          |---------|
        .          |
        .     Combine subsets 
        .     into one set
        .          |
        |----------|
        |
Initialize & load 
development data set  
        |
Initialize Model     <model.py>
Model(), Loss()
        | 
Initialize Optimizer core_scripts/op_manager/op_manager.py
        |
Load checkpoint      --trained-model option to main.py
        |
Start training       core_scripts/nn_manager/nn_manager.py f_train_wrapper()
        |             
        |----------|
        .          |
        .     Loop over training data
        .     for one epoch
        .          |
        .          |-------|    core_scripts/nn_manager/nn_manager.py f_run_one_epoch()
        .          |       |    
        .          |  Loop over 
        .          |  training data
        .          |       |
        .          |       |-------|
        .          |       .    get data_in, data_tar, data_info
        .          |       .    Call data_gen <- Model.forward(...)   <mode.py>
        .          |       .    Call Loss.compute()                   <mode.py>
        .          |       .    loss.backward()
        .          |       .    optimizer.step()
        .          |       .       |
        .          |       |-------|
        .          |       |
        .          |  Save checkpoint 
        .          |       |
        .          |  Early stop?
        .          |       | No  \
        .          |       |      \ Yes
        .          |<------|       |
        .                          |
        |--------------------------|
       Done

A detailed flowchat is ./misc/APPENDIX_1.md. This may be useful if you want to hack on the code.

6 On NSF projects (./project/01-nsf)

Differences from CURRENNT implementation

There may be more, but here are the important ones:

  • "Batch-normalization": in CURRENNT, "batch-normalization" is conducted along the length sequence, i.e., assuming each frame as one sample;

  • No bias in CNN and FF: due to the 1st point, NSF in this repository uses bias=false for CNN and feedforward layers in neural filter blocks, which can be helpful to make the hidden signals around 0;

  • Smaller learning rate: due to the 1st point, learning rate in this repository is decreased from 0.0003 to a smaller value. Accordingly, more training epochs are required;

  • STFT framing/padding: in CURRENNT, the first frame starts from the 1st step of a signal; in this Pytorch repository (as Librosa), the first frame is centered around the 1st step of a signal, and the frame is padded with 0;

  • STFT backward: in CURRENNT, STFT backward follows the steps in this paper; in Pytorch repository, backward over STFT is done by the Pytorch library.

  • ...

The learning curves look similar to the CURRENNT version. learning_curve

24kHz

Most of my experiments are done on 16 kHz waveforms. For 24 kHz waveforms, FIR or sinc digital filters in the model may be changed for better performance:

  1. hn-nsf: lp_v, lp_u, hp_v, and hp_u are calculated for 16 kHz configurations. For different sampling rate, you may use this online tool http://t-filter.engineerjs.com to get the filter coefficients. In this case, the stop-band for lp_v and lp_u is extended to 12k, while the pass-band for hp_v and hp_u is extended to 12k. The reason is that, no matter what is the sampling rate, the actual formats (in Hz) and spectral of sounds don't change with the sampling rate;

  2. hn-sinc-nsf and cyc-noise-nsf: for the similar reason above, the cut-off-frequency value (0, 1) should be adjusted. I will try (hidden_feat * 0.2 + uv * 0.4 + 0.3) * 16 / 24 in model.CondModuleHnSincNSF.get_cut_f();

Links

The end

Owner
Yamagishi and Echizen Laboratories, National Institute of Informatics
Yamagishi and Echizen Laboratories, National Institute of Informatics, Japan
Yamagishi and Echizen Laboratories, National Institute of Informatics
NeurIPS-2021: Neural Auto-Curricula in Two-Player Zero-Sum Games.

NAC Official PyTorch implementation of NAC from the paper: Neural Auto-Curricula in Two-Player Zero-Sum Games. We release code for: Gradient based ora

Xidong Feng 19 Nov 11, 2022
Analysis code and Latex source of the manuscript describing the conditional permutation test of confounding bias in predictive modelling.

Git repositoty of the manuscript entitled Statistical quantification of confounding bias in predictive modelling by Tamas Spisak The manuscript descri

PNI - Predictive Neuroimaging Lab, University Hospital Essen, Germany 0 Nov 22, 2021
A certifiable defense against adversarial examples by training neural networks to be provably robust

DiffAI v3 DiffAI is a system for training neural networks to be provably robust and for proving that they are robust. The system was developed for the

SRI Lab, ETH Zurich 202 Dec 13, 2022
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

Liming Jiang 238 Nov 25, 2022
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
Generating Digital Painting Lighting Effects via RGB-space Geometry (SIGGRAPH2020/TOG2020)

Project PaintingLight PaintingLight is a project conducted by the Style2Paints team, aimed at finding a method to manipulate the illumination in digit

651 Dec 29, 2022
Differentiable Annealed Importance Sampling (DAIS)

Differentiable Annealed Importance Sampling (DAIS) This repository contains the code to reproduce the DAIS results from the paper Differentiable Annea

Guodong Zhang 6 Dec 26, 2021
Pytorch-3dunet - 3D U-Net model for volumetric semantic segmentation written in pytorch

pytorch-3dunet PyTorch implementation 3D U-Net and its variants: Standard 3D U-Net based on 3D U-Net: Learning Dense Volumetric Segmentation from Spar

Adrian Wolny 1.3k Dec 28, 2022
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
Utilities and information for the signals.numer.ai tournament

dsignals Utilities and information for the signals.numer.ai tournament using eodhistoricaldata.com eodhistoricaldata.com provides excellent historical

Degerhan Usluel 23 Dec 18, 2022
Realtime_Multi-Person_Pose_Estimation

Introduction Multi Person PoseEstimation By PyTorch Results Require Pytorch Installation git submodule init && git submodule update Demo Download conv

tensorboy 1.3k Jan 05, 2023
Space Ship Simulator using python

FlyOver Basic space-ship simulator using python How to run? Just double click run.py What modules do i need? All modules that i currently using is bui

0 Oct 09, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
An end-to-end regression problem of predicting the price of properties in Bangalore.

Bangalore-House-Price-Prediction An end-to-end regression problem of predicting the price of properties in Bangalore. Deployed in Heroku using Flask.

Shruti Balan 1 Nov 25, 2022
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022
The pytorch implementation of SOKD (BMVC2021).

Semi-Online Knowledge Distillation Implementations of SOKD. Requirements This repo was tested with Python 3.8, PyTorch 1.5.1, torchvision 0.6.1, CUDA

4 Dec 19, 2021