Pytorch-3dunet - 3D U-Net model for volumetric semantic segmentation written in pytorch

Overview

DOI Build Status

pytorch-3dunet

PyTorch implementation 3D U-Net and its variants:

The code allows for training the U-Net for both: semantic segmentation (binary and multi-class) and regression problems (e.g. de-noising, learning deconvolutions).

2D U-Net

Training the standard 2D U-Net is also possible, see 2DUnet_dsb2018 for example configuration. Just make sure to keep the singleton z-dimension in your H5 dataset (i.e. (1, Y, X) instead of (Y, X)) , because data loading / data augmentation requires tensors of rank 3 always.

Prerequisites

  • Linux
  • NVIDIA GPU
  • CUDA CuDNN

Running on Windows

The package has not been tested on Windows, however some reported using it on Windows. One thing to keep in mind: when training with CrossEntropyLoss: the label type in the config file should be change from long to int64, otherwise there will be an error: RuntimeError: Expected object of scalar type Long but got scalar type Int for argument #2 'target'.

Supported Loss Functions

Semantic Segmentation

  • BCEWithLogitsLoss (binary cross-entropy)
  • DiceLoss (standard DiceLoss defined as 1 - DiceCoefficient used for binary semantic segmentation; when more than 2 classes are present in the ground truth, it computes the DiceLoss per channel and averages the values).
  • BCEDiceLoss (Linear combination of BCE and Dice losses, i.e. alpha * BCE + beta * Dice, alpha, beta can be specified in the loss section of the config)
  • CrossEntropyLoss (one can specify class weights via weight: [w_1, ..., w_k] in the loss section of the config)
  • PixelWiseCrossEntropyLoss (one can specify not only class weights but also per pixel weights in order to give more gradient to important (or under-represented) regions in the ground truth)
  • WeightedCrossEntropyLoss (see 'Weighted cross-entropy (WCE)' in the below paper for a detailed explanation; one can specify class weights via weight: [w_1, ..., w_k] in the loss section of the config)
  • GeneralizedDiceLoss (see 'Generalized Dice Loss (GDL)' in the below paper for a detailed explanation; one can specify class weights via weight: [w_1, ..., w_k] in the loss section of the config). Note: use this loss function only if the labels in the training dataset are very imbalanced e.g. one class having at least 3 orders of magnitude more voxels than the others. Otherwise use standard DiceLoss.

For a detailed explanation of some of the supported loss functions see: Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations Carole H. Sudre, Wenqi Li, Tom Vercauteren, Sebastien Ourselin, M. Jorge Cardoso

IMPORTANT: if one wants to use their own loss function, bear in mind that the current model implementation always output logits and it's up to the implementation of the loss to normalize it correctly, e.g. by applying Sigmoid or Softmax.

Regression

  • MSELoss
  • L1Loss
  • SmoothL1Loss
  • WeightedSmoothL1Loss - extension of the SmoothL1Loss which allows to weight the voxel values above (below) a given threshold differently

Supported Evaluation Metrics

Semantic Segmentation

  • MeanIoU - Mean intersection over union
  • DiceCoefficient - Dice Coefficient (computes per channel Dice Coefficient and returns the average) If a 3D U-Net was trained to predict cell boundaries, one can use the following semantic instance segmentation metrics (the metrics below are computed by running connected components on thresholded boundary map and comparing the resulted instances to the ground truth instance segmentation):
  • BoundaryAveragePrecision - Average Precision applied to the boundary probability maps: thresholds the boundary maps given by the network, runs connected components to get the segmentation and computes AP between the resulting segmentation and the ground truth
  • AdaptedRandError - Adapted Rand Error (see http://brainiac2.mit.edu/SNEMI3D/evaluation for a detailed explanation)
  • AveragePrecision - see https://www.kaggle.com/stkbailey/step-by-step-explanation-of-scoring-metric

If not specified MeanIoU will be used by default.

Regression

  • PSNR - peak signal to noise ratio

Installation

  • The easiest way to install pytorch-3dunet package is via conda:
conda create -n 3dunet -c conda-forge -c awolny pytorch-3dunet
conda activate 3dunet

After installation the following commands are accessible within the conda environment: train3dunet for training the network and predict3dunet for prediction (see below).

  • One can also install directly from source:
python setup.py install

Installation tips

Make sure that the installed pytorch is compatible with your CUDA version, otherwise the training/prediction will fail to run on GPU. You can re-install pytorch compatible with your CUDA in the 3dunet env by:

conda install -c pytorch torchvision cudatoolkit=<YOU_CUDA_VERSION> pytorch

Train

Given that pytorch-3dunet package was installed via conda as described above, one can train the network by simply invoking:

train3dunet --config <CONFIG>

where CONFIG is the path to a YAML configuration file, which specifies all aspects of the training procedure.

In order to train on your own data just provide the paths to your HDF5 training and validation datasets in the config.

The HDF5 files should contain the raw/label data sets in the following axis order: DHW (in case of 3D) CDHW (in case of 4D).

One can monitor the training progress with Tensorboard tensorboard --logdir <checkpoint_dir>/logs/ (you need tensorflow installed in your conda env), where checkpoint_dir is the path to the checkpoint directory specified in the config.

Training tips

  1. When training with binary-based losses, i.e.: BCEWithLogitsLoss, DiceLoss, BCEDiceLoss, GeneralizedDiceLoss: The target data has to be 4D (one target binary mask per channel). If you have a 3D binary data (foreground/background), you can just change ToTensor transform for the label to contain expand_dims: true, see e.g. train_config_dice.yaml. When training with WeightedCrossEntropyLoss, CrossEntropyLoss, PixelWiseCrossEntropyLoss the target dataset has to be 3D, see also pytorch documentation for CE loss: https://pytorch.org/docs/master/generated/torch.nn.CrossEntropyLoss.html
  2. final_sigmoid in the model config section applies only to the inference time: When training with cross entropy based losses (WeightedCrossEntropyLoss, CrossEntropyLoss, PixelWiseCrossEntropyLoss) set final_sigmoid=False so that Softmax normalization is applied to the output. When training with BCEWithLogitsLoss, DiceLoss, BCEDiceLoss, GeneralizedDiceLoss set final_sigmoid=True

Prediction

Given that pytorch-3dunet package was installed via conda as described above, one can run the prediction via:

predict3dunet --config <CONFIG>

In order to predict on your own data, just provide the path to your model as well as paths to HDF5 test files (see test_config_dice.yaml).

Prediction tips

In order to avoid checkerboard artifacts in the output prediction masks the patch predictions are averaged, so make sure that patch/stride params lead to overlapping blocks, e.g. patch: [64 128 128] stride: [32 96 96] will give you a 'halo' of 32 voxels in each direction.

Data Parallelism

By default, if multiple GPUs are available training/prediction will be run on all the GPUs using DataParallel. If training/prediction on all available GPUs is not desirable, restrict the number of GPUs using CUDA_VISIBLE_DEVICES, e.g.

CUDA_VISIBLE_DEVICES=0,1 train3dunet --config <CONFIG>

or

CUDA_VISIBLE_DEVICES=0,1 predict3dunet --config <CONFIG>

Examples

Cell boundary predictions for lightsheet images of Arabidopsis thaliana lateral root

The data can be downloaded from the following OSF project:

Training and inference configs can be found in 3DUnet_lightsheet_boundary.

Sample z-slice predictions on the test set (top: raw input , bottom: boundary predictions):

Cell boundary predictions for confocal images of Arabidopsis thaliana ovules

The data can be downloaded from the following OSF project:

Training and inference configs can be found in 3DUnet_confocal_boundary.

Sample z-slice predictions on the test set (top: raw input , bottom: boundary predictions):

Nuclei predictions for lightsheet images of Arabidopsis thaliana lateral root

The training and validation sets can be downloaded from the following OSF project: https://osf.io/thxzn/

Training and inference configs can be found in 3DUnet_lightsheet_nuclei.

Sample z-slice predictions on the test set (top: raw input, bottom: nuclei predictions):

2D nuclei predictions for Kaggle DSB2018

The data can be downloaded from: https://www.kaggle.com/c/data-science-bowl-2018/data

Training and inference configs can be found in 2DUnet_dsb2018.

Sample predictions on the test image (top: raw input, bottom: nuclei predictions):

Contribute

If you want to contribute back, please make a pull request.

Cite

If you use this code for your research, please cite as:

@article {10.7554/eLife.57613,
article_type = {journal},
title = {Accurate and versatile 3D segmentation of plant tissues at cellular resolution},
author = {Wolny, Adrian and Cerrone, Lorenzo and Vijayan, Athul and Tofanelli, Rachele and Barro, Amaya Vilches and Louveaux, Marion and Wenzl, Christian and Strauss, Sören and Wilson-Sánchez, David and Lymbouridou, Rena and Steigleder, Susanne S and Pape, Constantin and Bailoni, Alberto and Duran-Nebreda, Salva and Bassel, George W and Lohmann, Jan U and Tsiantis, Miltos and Hamprecht, Fred A and Schneitz, Kay and Maizel, Alexis and Kreshuk, Anna},
editor = {Hardtke, Christian S and Bergmann, Dominique C and Bergmann, Dominique C and Graeff, Moritz},
volume = 9,
year = 2020,
month = {jul},
pub_date = {2020-07-29},
pages = {e57613},
citation = {eLife 2020;9:e57613},
doi = {10.7554/eLife.57613},
url = {https://doi.org/10.7554/eLife.57613},
abstract = {Quantitative analysis of plant and animal morphogenesis requires accurate segmentation of individual cells in volumetric images of growing organs. In the last years, deep learning has provided robust automated algorithms that approach human performance, with applications to bio-image analysis now starting to emerge. Here, we present PlantSeg, a pipeline for volumetric segmentation of plant tissues into cells. PlantSeg employs a convolutional neural network to predict cell boundaries and graph partitioning to segment cells based on the neural network predictions. PlantSeg was trained on fixed and live plant organs imaged with confocal and light sheet microscopes. PlantSeg delivers accurate results and generalizes well across different tissues, scales, acquisition settings even on non plant samples. We present results of PlantSeg applications in diverse developmental contexts. PlantSeg is free and open-source, with both a command line and a user-friendly graphical interface.},
keywords = {instance segmentation, cell segmentation, deep learning, image analysis},
journal = {eLife},
issn = {2050-084X},
publisher = {eLife Sciences Publications, Ltd},
}
Comments
  • fix weights unsqueeze in PixelWiseCrossEntropy

    fix weights unsqueeze in PixelWiseCrossEntropy

    First off, thanks for the great library, @wolny ! It has really accelerated my work being able to start with a nice implementation of 3D unets.

    I think there might be a small bug in the PixelWiseCrossEntropy loss. It seems that the weights get passed in as a NxDxHxW tensor and in the "expand weights" code block they should be expanded to NxCxDxHxW tensor to match the target (which has been converted to a one hot encoding). Thus, I think the unsqueeze should be applied to axis 1, not axis 0. In this case the weights would become Nx1xDxHxW, then NxCxDxHxW in the subsequent weights.expand_as(input).

    Without this change, I get the following error when I train with batch size > 1.

    2021-03-12 17:05:50,156 [MainThread] INFO UNet3DTrainer - Training iteration [1/100000]. Epoch [0/99]
    Traceback (most recent call last):
      File "/cluster/home/kyamauch/.local/lib/python3.8/site-packages/pytorch3dunet/train.py", line 33, in <module>
        main()
      File "/cluster/home/kyamauch/.local/lib/python3.8/site-packages/pytorch3dunet/train.py", line 29, in main
        trainer.fit()
      File "/cluster/home/kyamauch/.local/lib/python3.8/site-packages/pytorch3dunet/unet3d/trainer.py", line 246, in fit
        should_terminate = self.train()
      File "/cluster/home/kyamauch/.local/lib/python3.8/site-packages/pytorch3dunet/unet3d/trainer.py", line 273, in train
        output, loss = self._forward_pass(input, target, weight)
      File "/cluster/home/kyamauch/.local/lib/python3.8/site-packages/pytorch3dunet/unet3d/trainer.py", line 408, in _forward_pass
        loss = self.loss_criterion(output, target, weight)
      File "/cluster/apps/nss/gcc-6.3.0/python_gpu/3.8.5/torch/nn/modules/module.py", line 727, in _call_impl
        result = self.forward(*input, **kwargs)
      File "/cluster/home/kyamauch/.local/lib/python3.8/site-packages/pytorch3dunet/unet3d/losses.py", line 220, in forward
        weights = weights.expand_as(input)
    RuntimeError: The expanded size of the tensor (3) must match the existing size (12) at non-singleton dimension 1.  Target sizes: [12, 3, 70, 70, 70].  Tensor sizes: [1, 12, 70, 70, 70]
    

    Does this change seem right?

    opened by kevinyamauchi 2
  • Update environment.yaml

    Update environment.yaml

    pytorch channel should have higher priority than conda-forge, otherwise the pytorch installation from conda-forge will be used. (And this causes issues with gpu installations)

    opened by constantinpape 1
  • Create command-lines (i.e. console_scripts) when installing from source

    Create command-lines (i.e. console_scripts) when installing from source

    Hi,

    I know that the command lines are installed into the conda environment.

    This code adds commands when installing from source (i.e. python setup.py install). I needed to do this as I ultimately want to call pytorch-3dunet within mpi2/LAMA and don't want to use the conda env due to install issues etc.

    Feel free to merge if it doesn't cause conflicts.

    Kind Regards, Kyle Drover

    opened by dorkylever 1
  • Read data path config as a directory

    Read data path config as a directory

    There may be many hdf5 data files, and it is common putting all data files in a directory. Specify all paths in the config file is somewhat inconvenient and makes the config unreadable.

    opened by songxiaocheng 1
  • Add Squeeze and Excitation and UNETR as an option

    Add Squeeze and Excitation and UNETR as an option

    Squeeze and Excitation UNet and UNETR can be selected as an option to train in config.yml.

    Example (UNETR):

    # use a fixed random seed to guarantee that when you run the code twice you will get the same outcome
    manual_seed: 0
    model:
      name: UNETR
      # number of input channels to the model
      in_channels: 1
      ...
    

    Example (SE UNet):

    # use a fixed random seed to guarantee that when you run the code twice you will get the same outcome
    manual_seed: 0
    model:
      name: ResidualUNetSE3D
      # number of input channels to the model
      in_channels: 1
      ...
    

    Credits for UNETR code.

    opened by imadtoubal 0
Owner
Adrian Wolny
PhD student in Machine Learning @HCIHeidelberg
Adrian Wolny
Official Pytorch Implementation for Splicing ViT Features for Semantic Appearance Transfer presenting Splice

Splicing ViT Features for Semantic Appearance Transfer [Project Page] Splice is a method for semantic appearance transfer, as described in Splicing Vi

Omer Bar Tal 253 Jan 06, 2023
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Junbin Xiao 50 Nov 24, 2022
Local Multi-Head Channel Self-Attention for FER2013

LHC-Net Local Multi-Head Channel Self-Attention This repository is intended to provide a quick implementation of the LHC-Net and to replicate the resu

12 Jan 04, 2023
Binary Stochastic Neurons in PyTorch

Binary Stochastic Neurons in PyTorch http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html https://github.com/pytorch/examples/tree/master/mnis

Onur Kaplan 54 Nov 21, 2022
MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction This is the official implementation for the ICCV 2021 paper Learning Sign

110 Dec 20, 2022
A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities

MPT A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities. Implementation for our AAAI 2022 paper: Multi-

yidiLi 4 May 08, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

Tianxiang Sun 149 Jan 04, 2023
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.

W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar

dE_soot 1 Dec 08, 2021
[ECCV 2020] Gradient-Induced Co-Saliency Detection

Gradient-Induced Co-Saliency Detection Zhao Zhang*, Wenda Jin*, Jun Xu, Ming-Ming Cheng ⭐ Project Home » The official repo of the ECCV 2020 paper Grad

Zhao Zhang 35 Nov 25, 2022
Matlab Python Heuristic Battery Opt - SMOP conversion and manual conversion

SMOP is Small Matlab and Octave to Python compiler. SMOP translates matlab to py

Tom Xu 1 Jan 12, 2022
Code for NAACL 2021 full paper "Efficient Attentions for Long Document Summarization"

LongDocSum Code for NAACL 2021 paper "Efficient Attentions for Long Document Summarization" This repository contains data and models needed to reprodu

56 Jan 02, 2023
Measures input lag without dedicated hardware, performing motion detection on recorded or live video

What is InputLagTimer? This tool can measure input lag by analyzing a video where both the game controller and the game screen can be seen on a webcam

Bruno Gonzalez 4 Aug 18, 2022
Small repo describing how to use Hugging Face's Wav2Vec2 with PyCTCDecode

🤗 Transformers Wav2Vec2 + PyCTCDecode Introduction This repo shows how 🤗 Transformers can be used in combination with kensho-technologies's PyCTCDec

Patrick von Platen 102 Oct 22, 2022
PaRT: Parallel Learning for Robust and Transparent AI

PaRT: Parallel Learning for Robust and Transparent AI This repository contains the code for PaRT, an algorithm for training a base network on multiple

Mahsa 0 May 02, 2022
The official homepage of the (outdated) COCO-Stuff 10K dataset.

COCO-Stuff 10K dataset v1.1 (outdated) Holger Caesar, Jasper Uijlings, Vittorio Ferrari Overview Welcome to official homepage of the COCO-Stuff [1] da

Holger Caesar 263 Dec 11, 2022
T2F: text to face generation using Deep Learning

⭐ [NEW] ⭐ T2F - 2.0 Teaser (coming soon ...) Please note that all the faces in the above samples are generated ones. The T2F 2.0 will be using MSG-GAN

Animesh Karnewar 533 Dec 22, 2022
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
Convenient tool for speeding up the intern/officer review process.

icpc-app-screen Convenient tool for speeding up the intern/officer applicant review process. Eliminates the pain from reading application responses of

1 Oct 30, 2021
A few stylization coreML models that I've trained with CreateML

CoreML-StyleTransfer A few stylization coreML models that I've trained with CreateML You can open and use the .mlmodel files in the "models" folder in

Doron Adler 8 Aug 18, 2022
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022