Measures input lag without dedicated hardware, performing motion detection on recorded or live video

Overview

What is InputLagTimer?

This tool can measure input lag by analyzing a video where both the game controller and the game screen can be seen on a webcam or a video file.

Here's how it looks in action:

Usage demo

Even though the typical usage is game latency, InputLagTimer can measure any latency so long as it's captured on video. For example, if you point a camera at both your car key and its door lock, you can measure how fast that remote unlocks your car.

How does it measure input lag?

You first mark two rectangles in the video you provide:

  • 🟦 Input rectangle (blue): where the input motion happens. Such as a gamepad stick.
  • πŸŸͺ Output rectangle (purple): where the response will be visible. Such as the middle left of your TV screen, where the front wheels can be seen turning in your car simulator.

InputLagTimer will detect motion on the input area, and time how long it takes to detect motion on the output area.

Things should work for latencies of up to 700ms; if you need to measure slower events, the limit can be trivially edited in code.

How to use it:

  1. Download InputLagTimer (some windows binaries are available on github if you prefer that)
  2. Open InputLagTimer:
    • Plug your webcam then run the program.
    • Or drag-and-drop your video file to the program.
    • Or, from command line, type InputLagTimer 2 to open the 3rd webcam, or InputLagTimer file.mp4 to open a file.
  3. Press S then follow screen instructions to select the 🟦 input and πŸŸͺ output rectangles.
  4. Observe the input and output motion bars at the top, and press 1/2 and 3/4 to adjust the motion detection thresholds (white indicator). Latency timing will start when the input motion passes the threshold, and stop when the output motion does.

Note: a .cfg file will be created for each video, allowing to reproduce the same latency analysis.

Tips and gotchas

  • Use a tripod to hold the camera. The InputLagTimer is based on motion detection, therefore hand-held footage is doomed to spam false positives.
  • Disable gamepad vibration and put the gamepad in a table (unless you want to measure vibration-latency!): in other words,reduce unnecessary motion from both the input and output rectangles.
  • Select the 🟦 input and πŸŸͺ output rectangles as accurately as possible. E.g. to measure keyboard key travel time, draw an input rectangle including the entire key height. If you don't want to include key travel latency, draw the input rectangle as close to the key activation point as possible.
  • If using certain artificial lights, enable camera's anti-flicker feature when available (press C in InputLagTimer when using a webcam), or choose a recording framerate different than the powerline frequency used in your country (often 50Hz or 60Hz). This removes video flicker, vastly improving motion detection.
  • Prefer higher recording framerate, this provides finer-grained latency measurements:
    • Some phones and actioncams can reach hundreds of FPS.
    • Recording equipment may not reach its advertised framerate if it's not bright enough. If in doubt, add more lighting.
  • If your camera cannot reach the requested framerate (e.g. it only manages to capture 120FPS out of 240FPS, due to lack of light), consider recording directly at the reachable framerate. This eliminates the useless filler frames your camera was forced to duplicate, making it easier to tune the motion detection thresholds in InputLagTimer.
  • Prefer global shutter over rolling shutter cameras. Rolling shutter can slightly skew latency measurements, as one corner of the image is recorded earlier than the oposite corner.

Rolling Shutter example

(source: Axel1963 - CC BY-SA 3.0)

  • Screens normally refresh pixels from the top earlier than pixels from the bottom (or left before right, etc). The location of 🟦 input/ πŸŸͺ output rectangles in a screen can slightly skew latency measurements.
  • The pixels on a screen can take longer or shorter to update, depending on:
    • Pixel color. E.g. white-to-black response time might be longer than black-to-white.
    • Panel type. E.g. OLED will normally be much quicker than LCD panels.
    • Screen configuration. E.g. enabling 'overdrive', enabling 'game mode', etc.
  • Press A (Advanced mode) to see more keys and additional information.

Advanced Mode screenshot

Dependencies

To run the EXE, you don't need anythig else. So move along, nothing to see in this section :)

To run the python code directly, you'll need opencv for python, numpy, and whichever python interpreter you prefer.

To build the binary (with compile.py), you'll need PyInstaller.

Credits and licenses

InputLagTimer software:

Copyright 2021 Bruno Gonzalez Campo | [email protected] | @stenyak

Distributed under MIT license (see license.txt)

InputLagTimer icon:

Copyright 2021 Bruno Gonzalez Campo | [email protected] | @stenyak

Distributed under CC BY 3.0 license (see license_icon.txt)

Icon derived from:

You might also like...
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image, and next a ResNet50 model trained on ImageNet is used to label each box.

Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONNX.
Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONNX.

ONNX-HybridNets-Multitask-Road-Detection Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONN

This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can

NeuralCompression is a Python repository dedicated to research of neural networks that compress data

NeuralCompression is a Python repository dedicated to research of neural networks that compress data. The repository includes tools such as JAX-based entropy coders, image compression models, video compression models, and metrics for image and video evaluation.

SCAAML is a deep learning framwork dedicated to side-channel attacks run on top of TensorFlow 2.x.
SCAAML is a deep learning framwork dedicated to side-channel attacks run on top of TensorFlow 2.x.

SCAAML (Side Channel Attacks Assisted with Machine Learning) is a deep learning framwork dedicated to side-channel attacks. It is written in python and run on top of TensorFlow 2.x.

NeoPlay is the project dedicated to ESport events.

NeoPlay is the project dedicated to ESport events. On this platform users can participate in tournaments with prize pools as well as create their own tournaments.

This program was designed to detect whether someone is wearing a facemask through a live video stream.

This program was designed to detect whether someone is wearing a facemask through a live video stream. A custom lightweight CNN trained with TensorFlow on a public dataset provided by Kaggle is used to detect whether each face detected by the cv2 face detection dnn is wearing a mask

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video
Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Video-Captioning - A machine Learning project to generate captions for video frames indicating the relationship between the objects in the video

Official implementation of the network presented in the paper
Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

M4Depth This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in M4Depth: A moti

Releases(v1.2)
  • v1.2(Mar 29, 2022)

    • Display summary of measured latencies: min/avg/max latencies and a histogram
    • Added display with the current framerate
    • Fixed incorrect timing when a webcam dropped below the advertised framerate
    • The 'a' key will now cycle between varying amounts of detail (more detail can lead to lower framerates)
    • Add CC license links on readme
    • Minor cleanups here and there

    Full Changelog: https://github.com/stenyak/inputLagTimer/compare/v1.1...v1.2

    Source code(tar.gz)
    Source code(zip)
    InputLagTimer.exe(50.81 MB)
  • v1.1(Jan 8, 2022)

    • Fix safety timeout kicking in too soon if using a custom maxLatency
    • Fix first webcam being ignored when running the program without arguments
    • Rename compiled file from camelCase to CamelCase

    Full Changelog: https://github.com/stenyak/inputLagTimer/compare/v1.0...v1.1

    Source code(tar.gz)
    Source code(zip)
    InputLagTimer.exe(49.22 MB)
  • v1.0(Jan 8, 2022)

Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022
Mmdetection3d Noted - MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch

Jiangjingwen 13 Jan 06, 2023
Toolkit for collecting and applying prompts

PromptSource Promptsource is a toolkit for collecting and applying prompts to NLP datasets. Promptsource uses a simple templating language to programa

BigScience Workshop 998 Jan 03, 2023
Official PyTorch Implementation of SSMix (Findings of ACL 2021)

SSMix: Saliency-based Span Mixup for Text Classification (Findings of ACL 2021) Official PyTorch Implementation of SSMix | Paper Abstract Data augment

Clova AI Research 52 Dec 27, 2022
UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning This is the official PyTorch implementation for UniMoCo pape

dddzg 49 Jan 02, 2023
Apply our monocular depth boosting to your own network!

MergeNet - Boost Your Own Depth Boost custom or edited monocular depth maps using MergeNet Input Original result After manual editing of base You can

Computational Photography Lab @ SFU 142 Dec 17, 2022
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
Hl classification bc - A Network-Based High-Level Data Classification Algorithm Using Betweenness Centrality

A Network-Based High-Level Data Classification Algorithm Using Betweenness Centr

Esteban Vilca 3 Dec 01, 2022
Libtorch yolov3 deepsort

Overview It is for my undergrad thesis in Tsinghua University. There are four modules in the project: Detection: YOLOv3 Tracking: SORT and DeepSORT Pr

Xu Wei 226 Dec 13, 2022
PyTorch implementation for "HyperSPNs: Compact and Expressive Probabilistic Circuits", NeurIPS 2021

HyperSPN This repository contains code for the paper: HyperSPNs: Compact and Expressive Probabilistic Circuits "HyperSPNs: Compact and Expressive Prob

8 Nov 08, 2022
Official implementation of the paper Momentum Capsule Networks (MoCapsNet)

Momentum Capsule Network Official implementation of the paper Momentum Capsule Networks (MoCapsNet). Abstract Capsule networks are a class of neural n

8 Oct 20, 2022
The Illinois repository for Climatehack (https://climatehack.ai/). We won 1st place!

Climatehack This is the repository for Illinois's Climatehack Team. We earned first place on the leaderboard with a final score of 0.87992. An overvie

Jatin Mathur 20 Jun 09, 2022
Convnet transfer - Code for paper How transferable are features in deep neural networks?

How transferable are features in deep neural networks? This repository contains source code necessary to reproduce the results presented in the follow

Jason Yosinski 143 Sep 13, 2022
Management Dashboard for Torchserve

Torchserve Dashboard Torchserve Dashboard using Streamlit Related blog post Usage Additional Requirement: torchserve (recommended:v0.5.2) Simply run:

Ceyda Cinarel 103 Dec 10, 2022
Investigating Attention Mechanism in 3D Point Cloud Object Detection (arXiv 2021)

Investigating Attention Mechanism in 3D Point Cloud Object Detection (arXiv 2021) This repository is for the following paper: "Investigating Attention

52 Nov 19, 2022
Approaches to modeling terrain and maps in python

topography 🌎 Contains different approaches to modeling terrain and topographic-style maps in python Features Inverse Distance Weighting (IDW) A given

John Gutierrez 1 Aug 10, 2022
Reference models and tools for Cloud TPUs.

Cloud TPUs This repository is a collection of reference models and tools used with Cloud TPUs. The fastest way to get started training a model on a Cl

5k Jan 05, 2023
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

632 Dec 13, 2022
Code for the KDD 2021 paper 'Filtration Curves for Graph Representation'

Filtration Curves for Graph Representation This repository provides the code from the KDD'21 paper Filtration Curves for Graph Representation. Depende

Machine Learning and Computational Biology Lab 16 Oct 16, 2022
This is an official implementation for "DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation"

DeciWatch: A Simple Baseline for 10Γ— Efficient 2D and 3D Pose Estimation This repo is the official implementation of "DeciWatch: A Simple Baseline for

117 Dec 24, 2022