A curated list of programmatic weak supervision papers and resources

Overview

Awesome-Weak-Supervision Awesome

A curated list of programmatic/rule-based weak supervision papers and resources.

Contents

An overview of weak supervision

Blogs

An Overview of Weak Supervision

Building NLP Classifiers Cheaply With Transfer Learning and Weak Supervision

Videos

Theory & Systems for Weak Supervision | Chinese Version

Lecture Notes

Lecture Notes on Weak Supervision

Algorithm

Data Programming: Creating Large Training Sets, Quickly. Alex Ratner NeurIPS 2016

Socratic Learning: Augmenting Generative Models to Incorporate Latent Subsets in Training Data. Paroma Varma FILM-NeurIPS 2016

Training Complex Models with Multi-Task Weak Supervision. Alex Ratner AAAI 2019

Data Programming using Continuous and Quality-Guided Labeling Functions. Oishik Chatterjee AAAI 2020

Fast and Three-rious: Speeding Up Weak Supervision with Triplet Methods. Dan Fu ICML 2020

Learning from Rules Generalizing Labeled Exemplars. Abhijeet Awasthi ICLR 2020

Train and You'll Miss It: Interactive Model Iteration with Weak Supervision and Pre-Trained Embeddings. Mayee F. Chen 2020

Learning the Structure of Generative Models without Labeled Data. Stephen H. Bach ICML 2017

Inferring Generative Model Structure with Static Analysis. Paroma Varma NeurIPS 2017

Learning Dependency Structures for Weak Supervision Models. Paroma Varma ICML 2019

Self-Training with Weak Supervision. Giannis Karamanolakis NAACL 2021

Interactive Programmatic Labeling for Weak Supervision. Benjamin Cohen-Wang KDD Workshop 2019

Pairwise Feedback for Data Programming. Benedikt Boecking NeurIPS 2019 workshop on Learning with Rich Experience: Integration of Learning Paradigms

Interactive Weak Supervision: Learning Useful Heuristics for Data Labeling. Benedikt Boecking ICLR 2021

Active WeaSuL: Improving Weak Supervision with Active Learning. Samantha Biegel ICLR WeaSuL 2021

System

Snorkel: Rapid Training Data Creation with Weak Supervision. Alex Ratner VLDB 2018

Snorkel DryBell: A Case Study in Deploying Weak Supervision at Industrial Scale. Stephen H. Bach SIGMOD (Industrial) 2019

Snuba: Automating Weak Supervision to Label Training Data. Paroma Varma VLDB 2019

Migrating a Privacy-Safe Information Extraction System to a Software 2.0 Design. Ying Sheng CIDR 2020

Overton: A Data System for Monitoring and Improving Machine-Learned Products. Christopher Ré CIDR 2020

Ruler: Data Programming by Demonstration for Document Labeling. Sara Evensen EMNLP 2020 Findings

skweak: Weak Supervision Made Easy for NLP. Pierre Lison 2021

Application

CV

Scene Graph Prediction with Limited Labels. Vincent Chen ICCV 2019

Multi-Resolution Weak Supervision for Sequential Data. Paroma Varma NeurIPS 2019

Rekall: Specifying Video Events using Compositions of Spatiotemporal Labels. Daniel Y. Fu SOSP 2019

GOGGLES: Automatic Image Labeling with Affinity Coding. Nilaksh Das SIGMOD 2020

Cut out the annotator, keep the cutout: better segmentation with weak supervision. Sarah Hooper ICLR 2021

Task Programming: Learning Data Efficient Behavior Representations. Jennifer J. Sun CVPR 2021

NLP

Heterogeneous Supervision for Relation Extraction: A Representation Learning Approach. Liyuan Liu EMNLP 2017

Training Classifiers with Natural Language Explanations. Braden Hancock ACL 2018

Deep Text Mining of Instagram Data without Strong Supervision. Kim Hammar ICWI 2018

Bootstrapping Conversational Agents With Weak Supervision. Neil Mallinar AAAI 2019

Weakly Supervised Sequence Tagging from Noisy Rules. Esteban Safranchik AAAI 2020

NERO: A Neural Rule Grounding Framework for Label-Efficient Relation Extraction. Wenxuan Zhou WWW 2020

Named Entity Recognition without Labelled Data: A Weak Supervision Approach. Pierre Lison ACL 2020

Fine-Tuning Pre-trained Language Model with Weak Supervision: A Contrastive-Regularized Self-Training Approach. Yue Yu NAACL 2021

BERTifying Hidden Markov Models for Multi-Source Weakly Supervised Named Entity Recognition Yinghao Li ACL 2021

RL

Generating Multi-Agent Trajectories using Programmatic Weak Supervision. Eric Zhan ICLR 2019

Others

Generating Training Labels for Cardiac Phase-Contrast MRI Images. Vincent Chen MED-NeurIPS 2017

Osprey: Weak Supervision of Imbalanced Extraction Problems without Code. Eran Bringer SIGMOD DEEM Workshop 2019

Weakly Supervised Classification of Rare Aortic Valve Malformations Using Unlabeled Cardiac MRI Sequences. Jason Fries Nature Communications 2019

Doubly Weak Supervision of Deep Learning Models for Head CT. Khaled Saab MICCAI 2019

A clinical text classification paradigm using weak supervision and deep representation. Yanshan Wang BMC MIDM 2019

A machine-compiled database of genome-wide association studies. Volodymyr Kuleshov Nature Communications 2019

Weak Supervision as an Efficient Approach for Automated Seizure Detection in Electroencephalography. Khaled Saab NPJ Digital Medicine 2020

Extracting Chemical Reactions From Text Using Snorkel. Emily Mallory BMC Bioinformatics 2020

Cross-Modal Data Programming Enables Rapid Medical Machine Learning. Jared A. Dunnmon Patterns 2020

SwellShark: A Generative Model for Biomedical Named Entity Recognition without Labeled Data. Jason Fries

Ontology-driven weak supervision for clinical entity classification in electronic health records. Jason Fries Nature Communications 2021

Utilizing Weak Supervision to Infer Complex Objects and Situations in Autonomous Driving Data. Zhenzhen Weng IV 2019

Multi-frame Weak Supervision to Label Wearable Sensor Data. Saelig Khattar ICML Time Series Workshop 2019

Thesis

Acclerating Machine Learning with Training Data Management. Alex Ratner

Weak Supervision From High-Level Abstrations. Braden Jay Hancock

Other Weak Supervision Paradigm

Label-name Only Supervision

Weakly-Supervised Neural Text Classification. Yu Meng CIKM 2018

Weakly-Supervised Hierarchical Text Classification. Yu Meng AAAI 2019

Weakly-Supervised Aspect-Based Sentiment Analysis via Joint Aspect-Sentiment Topic Embedding. Jiaxin Huang EMNLP 2020

Text Classification Using Label Names Only: A Language Model Self-Training Approach. Yu Meng EMNLP 2020

Hierarchical Metadata-Aware Document Categorization under Weak Supervision. Yu Zhang WSDM 2021

Owner
Jieyu Zhang
CS PhD
Jieyu Zhang
QueryDet: Cascaded Sparse Query for Accelerating High-Resolution SmallObject Detection

QueryDet-PyTorch This repository is the official implementation of our paper: QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small O

Chenhongyi Yang 276 Dec 31, 2022
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
A check for whether the dependency jobs are all green.

alls-green A check for whether the dependency jobs are all green. Why? Do you have more than one job in your GitHub Actions CI/CD workflows setup? Do

Re:actors 33 Jan 03, 2023
Differentiable Factor Graph Optimization for Learning Smoothers @ IROS 2021

Differentiable Factor Graph Optimization for Learning Smoothers Overview Status Setup Datasets Training Evaluation Acknowledgements Overview Code rele

Brent Yi 60 Nov 14, 2022
functorch is a prototype of JAX-like composable function transforms for PyTorch.

functorch is a prototype of JAX-like composable function transforms for PyTorch.

Facebook Research 1.2k Jan 09, 2023
Accelerated SMPL operation, commonly used in generate 3D human mesh, STAR included.

SMPL2 An enchanced and accelerated SMPL operation which commonly used in 3D human mesh generation. It takes a poses, shapes, cam_trans as inputs, outp

JinTian 20 Oct 17, 2022
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022
This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization

Spherical Gaussian Optimization This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization. This code has b

41 Dec 14, 2022
HackBMU-5.0-Team-Ctrl-Alt-Elite - HackBMU 5.0 Team Ctrl Alt Elite

HackBMU-5.0-Team-Ctrl-Alt-Elite The search is over. We present to you ‘Health-A-

3 Feb 19, 2022
A Japanese Medical Information Extraction Toolkit

JaMIE: a Japanese Medical Information Extraction toolkit Joint Japanese Medical Problem, Modality and Relation Recognition The Train/Test phrases requ

7 Dec 12, 2022
Simulation of Self Driving Car

In this repository, the code to use Udacity's self driving car simulator as a testbed for training an autonomous car are provided.

Shyam Das Shrestha 1 Nov 21, 2021
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022
ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022
上海交通大学全自动抢课脚本,支持准点开抢与抢课后持续捡漏两种模式。2021/06/08更新。

Welcome to Course-Bullying-in-SJTU-v3.1! 2021/6/8 紧急更新v3.1 更新说明 为了更好地保护用户隐私,将原来用户名+密码的登录方式改为微信扫二维码+cookie登录方式,不再需要配置使用pytesseract。在使用扫码登录模式时,请稍等,二维码将马

87 Sep 13, 2022
Implementation of 'X-Linear Attention Networks for Image Captioning' [CVPR 2020]

Introduction This repository is for X-Linear Attention Networks for Image Captioning (CVPR 2020). The original paper can be found here. Please cite wi

JDAI-CV 240 Dec 17, 2022
DeepAL: Deep Active Learning in Python

DeepAL: Deep Active Learning in Python Python implementations of the following active learning algorithms: Random Sampling Least Confidence [1] Margin

Kuan-Hao Huang 583 Jan 03, 2023
A Pytorch Implementation of [Source data‐free domain adaptation of object detector through domain

A Pytorch Implementation of Source data‐free domain adaptation of object detector through domain‐specific perturbation Please follow Faster R-CNN and

1 Dec 25, 2021
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, whi

KAIST Data Mining Lab 8 Dec 07, 2022
HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method)

Methods HMLET (Hybrid-Method-of-Linear-and-non-linEar-collaborative-filTering-method) Dynamically selecting the best propagation method for each node

Yong 7 Dec 18, 2022
LiDAR R-CNN: An Efficient and Universal 3D Object Detector

LiDAR R-CNN: An Efficient and Universal 3D Object Detector Introduction This is the official code of LiDAR R-CNN: An Efficient and Universal 3D Object

TuSimple 295 Jan 05, 2023