Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Overview

Explainability Requires Interactivity

This repository contains the code to train all custom models used in the paper Explainability Requires Interactivity as well as to create all static explanations (heat maps and generative). For our interactive framework, see the sister repositor.

Precomputed generative explanations are located at static_generative_explanations.

Requirements

Install the conda environment via conda env create -f env.yml (depending on your system you might need to change some versions, e.g. for pytorch, cudatoolkit and pytorch-lightning).

For some parts you will need the FairFace model, which can be downloaded from the authors' repo. You will only need the res34_fair_align_multi_7_20190809.pt file.

Training classification networks

CelebA dataset

You first need to download and decompress the CelebAMask-HQ dataset (or here). Then run the training with

python train.py --dset celeb --dset_path /PATH/TO/CelebAMask-HQ/ --classes_or_attr Smiling --target_path /PATH/TO/OUTPUT

/PATH/TO/FLOWERS102/ should contain a CelebAMask-HQ-attribute-anno.txt file and an CelebA-HQ-img directory. Any of the columns in CelebAMask-HQ-attribute-anno.txt can be used; in the paper we used Heavy_Makeup, Male, Smiling, and Young.

Flowers102 dataset

You first need to download and decompress the Flowers102 data. Then run the training with

python train.py --dset flowers102 --dset_path /PATH/TO/FLOWERS102/ --classes_or_attr 49-65 --target_path /PATH/TO/OUTPUT/

/PATH/TO/FLOWERS102/ should contain an imagelabels.mat file and an images directory. Classes 49 and 65 correspond to the "Oxeye daisy" and "California poppy", while 63 and 54 correspond to "Black-eyed Susan" and "Sunflower" as in the paper.

Generating heatmap explanations

Heatmap explanations are generated using the Captum library. After training, run explanations via

python static_exp.py --model_path /PATH/TO/MODEL.pt --img_path /PATH/TO/IMGS/ --model_name celeb --fig_dir /PATH/TO/OUTPUT/

/PATH/TO/IMGS/ contains (only) image files and can be omitted in order to run the default images exported by train.py. To run on FairFace, choose --model_name fairface and add --attr age or --attr gender. Other explanation methods can be easily added by modifying the explain_all function in static_exp.py. Explanations are saved to fig_dir. Only tested for the networks trained on the facial images data in the previous step, but any resnet18 with scalar output layer should work just as well.

Generating generative explanations

First, clone the original NVIDIA StyleGAN2-ada-pytorch repo. Make sure everything works as expected (e.g. run the getting started code). If the code is stuck at loading TODO, usually ctrl-C will let the model fall back to a smaller reference implementation which is good enough for our use case. Next, export the repo into your PYTHONPATH (e.g. via export PYTHONPATH=$PYTHONPATH:/PATH/TO/stylegan2-ada-pytorch/). To generate explanations, you will need to 0) train an image model (see above, or use the FairFace model); 1) create a dataset of latent codes + labels; 2) train a latent space logistic regression models; and 3) create the explanations. As each of the steps can be very slow, we split them up

Create labeled latent dataset

First, make sure to either train at least one image model as in the first step and/or download the FairFace model.

python generative_exp.py --phase 1 --attrs Smiling,ff-skin-color --base_dir /PATH/TO/BASE/ --generator_path /PATH/TO/STYLEGAN2.pkl --n_train 20000 --n_valid 5000

The base_dir is the directory where all files/sub-directories are stored and should be the same as the target_path from train.py (e.g., just .). It should contain e.g. the celeb-Smiling directory and the res34_fair_align_multi_7_20190809.pt file if using --attrs Smiling,ff-skin-color.

Train latent space model

After the first step, run

python generative_exp.py --phase 2 --attrs Smiling,ff-skin-color --base_dir /PATH/TO/BASE/ --epochs 50

with same base_dir and attrs.

Create generative explanations

Finally, you can generate generative explanations via

python generative_exp.py --phase 3 --base_dir /PATH/TO/BASE/ --eval_attr Smiling --generator_path /PATH/TO/STYLEGAN2.pkl --attrs Smiling,ff-skin-color --reconstruction_steps 1000 --ampl 0.09 --input_img_dir /PATH/TO/IMAGES/ --output_dir /PATH/TO/OUTPUT/

Here, eval_attr is the final evaluation model's class that you want to explain; attrs are the same as before, the directions in latent space; input_img_dir is a directory with (only) image files that are to be explained. Explanations are saved to output_dir.

Owner
Digital Health & Machine Learning
Digital Health & Machine Learning
A PaddlePaddle implementation of STGCN with a few modifications in the model architecture in order to forecast traffic jam.

About This repository contains the code of a PaddlePaddle implementation of STGCN based on the paper Spatio-Temporal Graph Convolutional Networks: A D

Tianjian Li 1 Jan 11, 2022
CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks

CALVIN CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks Oier Mees, Lukas Hermann, Erick Rosete,

Oier Mees 107 Dec 26, 2022
Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Learning Domain Invariant Representations in Goal-conditioned Block MDPs Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael R. Zhang, Jim

Chongyi Zheng 3 Apr 12, 2022
This is a model made out of Neural Network specifically a Convolutional Neural Network model

This is a model made out of Neural Network specifically a Convolutional Neural Network model. This was done with a pre-built dataset from the tensorflow and keras packages. There are other alternativ

9 Oct 18, 2022
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

BMW TechOffice MUNICH 68 Nov 24, 2022
Learning To Have An Ear For Face Super-Resolution

Learning To Have An Ear For Face Super-Resolution [Project Page] This repository contains demo code of our CVPR2020 paper. Training and evaluation on

50 Nov 16, 2022
Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.

GNet-pose Project Page: http://guanghan.info/projects/guided-fractal/ UPDATE 9/27/2018: Prototxts and model that achieved 93.9Pck on LSP dataset. http

Guanghan Ning 83 Nov 21, 2022
R3Det based on mmdet 2.19.0

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object Installation # install mmdetection first if you haven't installed it

SJTU-Thinklab-Det 38 Dec 15, 2022
OOD Dataset Curator and Benchmark for AI-aided Drug Discovery

🔥 DrugOOD 🔥 : OOD Dataset Curator and Benchmark for AI Aided Drug Discovery This is the official implementation of the DrugOOD project, this is the

108 Dec 17, 2022
The official implementation of ELSA: Enhanced Local Self-Attention for Vision Transformer

ELSA: Enhanced Local Self-Attention for Vision Transformer By Jingkai Zhou, Pich

DamoCV 87 Dec 19, 2022
Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide range of illumination variants of a single image.

Deep Illuminator Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide

George Chogovadze 52 Nov 29, 2022
codebase for "A Theory of the Inductive Bias and Generalization of Kernel Regression and Wide Neural Networks"

Eigenlearning This repo contains code for replicating the experiments of the paper A Theory of the Inductive Bias and Generalization of Kernel Regress

Jamie Simon 45 Dec 02, 2022
A series of Jupyter notebooks with Chinese comment that walk you through the fundamentals of Machine Learning and Deep Learning in python using Scikit-Learn and TensorFlow.

Hands-on-Machine-Learning 目的 这份笔记旨在帮助中文学习者以一种较快较系统的方式入门机器学习, 是在学习Hands-on Machine Learning with Scikit-Learn and TensorFlow这本书的 时候做的个人笔记: 此项目的可取之处 原书的

Baymax 1.5k Dec 21, 2022
PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and Multi-Step Knowledge Distillation

PocketNet This is the official repository of the paper: PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and M

Fadi Boutros 40 Dec 22, 2022
Noether Networks: meta-learning useful conserved quantities

Noether Networks: meta-learning useful conserved quantities This repository contains the code necessary to reproduce experiments from "Noether Network

Dylan Doblar 33 Nov 23, 2022
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022
Tutorial in Python targeted at Epidemiologists. Will discuss the basics of analysis in Python 3

Python-for-Epidemiologists This repository is an introduction to epidemiology analyses in Python. Additionally, the tutorials for my library zEpid are

Paul Zivich 120 Nov 17, 2022
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
FG-transformer-TTS Fine-grained style control in transformer-based text-to-speech synthesis

LST-TTS Official implementation for the paper Fine-grained style control in transformer-based text-to-speech synthesis. Submitted to ICASSP 2022. Audi

Li-Wei Chen 64 Dec 30, 2022
Fake News Detection Using Machine Learning Methods

Fake-News-Detection-Using-Machine-Learning-Methods Fake news is always a real and dangerous issue. However, with the presence and abundance of various

Achraf Safsafi 1 Jan 11, 2022