A library for uncertainty quantification based on PyTorch

Overview

Torchuq [logo here]

TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representations for uncertainty, and around 50 different methods for uncertainty evaluation and visualization, calibration and conformal prediction.

Why TorchUQ

TorchUQ is a one-stop solution for uncertainty quantification (UQ).

Accurate uncertainty quantification (UQ) is extremely important in high-stakes applications such as autonomous driving, healthcare, and public policy --- prediction models in such applications should know what they do not know. UQ also finds numerous applications in active learning, statistical inference, or in natural science and engineering applications that are rife with sources of uncertainty.

For practitioners

Torchuq aims to provide an easy to use arsenal of uncertainty quantification methods. Torchuq is designed for the following benefits:

Plug and Play: Simple unified interface to access a large arsenal of UQ methods.

Built on PyTorch: Native GPU & auto-diff support, seamless integration with deep learning pipelines.

Documentation: Detailed tutorial to walk through popular UQ algorithms. Extensive documentation.

Extensive and Extensible: Supports calibration, conformal, multi-calibration and forecast evaluation. Easy to add new methods.

For researchers

Torchuq aims to provide a easy to use platform for conducting and distributing research on uncertainty quantification. Torchuq is designed for the following benefits:

Baseline implementation: TorchUQ provides high quality implementation of many popular baseline methods to standardize comparison.

Benchmark datasets: a large set of datasets used in recent UQ papers with a one-line interface to retrieve these datasets.

Distribute your research: you are welcome to distribute your algorithm via the TorchUQ interface. For details see [link].

Installation

First download the torchuq from pypi. To run the code, you can install the dependencies with the follwoing command

pip3 install requirements

pypi package link to come

Quickstart

import torchuq
from torchuq.evaluate import distribution 
from torchuq.transform.conformal import ConformalCalibrator 
from torchuq.dataset import create_example_regression  

In this very simple example, we create a synthetic prediction (which is a set of Gaussian distributions) and recalibrate them with conformal calibration.

predictions, labels = create_example_regression()

The example predictions are intentially incorrect (i.e. the label is not drawn from the predictions). We will recalibrate the distribution with a powerful recalibration algorithm called conformal calibration. It takes as input the predictions and the labels, and learns a recalibration map that can be applied to new data (here for illustration purposes we apply it to the original data).

calibrator = ConformalCalibrator(input_type='distribution', interpolation='linear')
calibrator.train(predictions, labels)
adjusted_predictions = calibrator(predictions)

We can plot these distribution predictions as a sequence of density functions, and the labels as the cross-shaped markers. As shown by the plot, the original predictions have systematically incorrect variance and mean, which is fixed by the recalibration algorithm.

distribution.plot_density_sequence(predictions, labels, smooth_bw=10)
distribution.plot_density_sequence(adjusted_predictions, labels, smooth_bw=10)

plot_original plot_calibrate

What's Next?

A good way to start is to read about the basic design philosophy and usage of the package, then go through these tutorials. All the tutorials are interactive jupyter notebooks. You can either download them to run locally or view them here.

Owner
TorchUQ
TorchUQ
A simple root calculater for python

Root A simple root calculater Usage/Examples python3 root.py 9 3 4 # Order: number - grid - number of decimals # Output: 2.08

Reza Hosseinzadeh 5 Feb 10, 2022
Binary classification for arrythmia detection with ECG datasets.

HEART DISEASE AI DATATHON 2021 [Eng] / [Kor] #English This is an AI diagnosis modeling contest that uses the heart disease echocardiography and electr

HY_Kim 3 Jul 14, 2022
Robust Partial Matching for Person Search in the Wild

APNet for Person Search Introduction This is the code of Robust Partial Matching for Person Search in the Wild accepted in CVPR2020. The Align-to-Part

Yingji Zhong 36 Dec 18, 2022
AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations

AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations. Each modality’s augmentations are contained within its own sub-l

Facebook Research 4.6k Jan 09, 2023
This repository contains implementations and illustrative code to accompany DeepMind publications

DeepMind Research This repository contains implementations and illustrative code to accompany DeepMind publications. Along with publishing papers to a

DeepMind 11.3k Dec 31, 2022
Machine learning Bot detection technique, based on United States election dataset

Machine learning Bot detection technique, based on United States election dataset (2020). Current github repo provides implementation described in pap

Alexander Shevtsov 4 Nov 20, 2022
Instant neural graphics primitives: lightning fast NeRF and more

Instant Neural Graphics Primitives Ever wanted to train a NeRF model of a fox in under 5 seconds? Or fly around a scene captured from photos of a fact

NVIDIA Research Projects 10.6k Jan 01, 2023
Texture mapping with variational auto-encoders

vae-textures This is an experiment with using variational autoencoders (VAEs) to perform mesh parameterization. This was also my first project using J

Alex Nichol 41 May 24, 2022
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled Time Series presented at Causal Analysis Workshop 2021.

signed-area-causal-inference This repository contains code demonstrating the methods outlined in Path Signature Area-Based Causal Discovery in Coupled

Will Glad 1 Mar 11, 2022
My course projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU)

ML2021Spring There are my projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU) Course Web : https://speech.ee.

Ding-Li Chen 15 Aug 29, 2022
Fre-GAN: Adversarial Frequency-consistent Audio Synthesis

Fre-GAN Vocoder Fre-GAN: Adversarial Frequency-consistent Audio Synthesis Training: python train.py --config config.json Citation: @misc{kim2021frega

Rishikesh (ऋषिकेश) 93 Dec 17, 2022
The Video-based Accident Detection System built in Python

Accident-detection-system About the Project This Repository contains the Video-based Accident Detection System built in Python. Contributors Yukta Gop

SURYAVANSHI SNEHAL BALKRISHNA 50 Dec 07, 2022
A set of tools to pre-calibrate and calibrate (multi-focus) plenoptic cameras (e.g., a Raytrix R12) based on the libpleno.

COMPOTE: Calibration Of Multi-focus PlenOpTic camEra. COMPOTE is a set of tools to pre-calibrate and calibrate (multifocus) plenoptic cameras (e.g., a

ComSEE - Computers that SEE 4 May 10, 2022
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation"

DSP Official implementation of "DSP: Dual Soft-Paste for Unsupervised Domain Adaptive Semantic Segmentation". Accepted by ACM Multimedia 2021. Authors

20 Oct 24, 2022
RAMA: Rapid algorithm for multicut problem

RAMA: Rapid algorithm for multicut problem Solves multicut (correlation clustering) problems orders of magnitude faster than CPU based solvers without

Paul Swoboda 60 Dec 13, 2022
[3DV 2021] A Dataset-Dispersion Perspective on Reconstruction Versus Recognition in Single-View 3D Reconstruction Networks

dispersion-score Official implementation of 3DV 2021 Paper A Dataset-dispersion Perspective on Reconstruction versus Recognition in Single-view 3D Rec

Yefan 7 May 28, 2022
No Code AI/ML platform

NoCodeAIML No Code AI/ML platform - Community Edition Video credits: Uday Kiran Typical No Code AI/ML Platform will have features like drag and drop,

Bhagvan Kommadi 5 Jan 28, 2022
A cross-lingual COVID-19 fake news dataset

CrossFake An English-Chinese COVID-19 fake&real news dataset from the ICDMW 2021 paper below: Cross-lingual COVID-19 Fake News Detection. Jiangshu Du,

Yingtong Dou 11 Dec 01, 2022