Simple Dynamic Batching Inference

Related tags

Deep LearningSDBI
Overview

Simple Dynamic Batching Inference

解决了什么问题?

众所周知,Batch对于GPU上深度学习模型的运行效率影响很大。。。

是在Inference时。搜索、推荐等场景自带比较大的batch,问题不大。但更多场景面临的往往是稀碎的请求(比如图片服务里一次一张图)。

如果想提高服务的吞吐,把稀碎的请求动态攒成Batch再送GPU处理就是刚需。

NV的Triton包含了Dynamic Batching功能。我也用cpp写过一版。但是发现在部署、特别是给别人用python来调用的时候,始终是比较麻烦的。比如要各种配置环境或用NGC的镜像、走个本地rpc等。。

反过来想,只要程序瓶颈还卡在计算上,就有机会用python写一版至少吞吐上可以打平cpp的Dynamic Batching。好处是使用会方便很多。

出于个人需要和兴趣,之前基于multiprocess.Queue写过一版Dynamic Batching。但是Queue本身对于延迟的影响非常大,数字比较难看。

最近发现Python 3.8支持了共享内存,用python写了个基于SharedMemory的Dynamic Batching。

跟大家分享一下效果。

测试环境

模型Resnet50,输入(N,3,224,224)。使用某云的V100。

测试结果

我们先测一下Torch性能上限,好对数据有个基本了解。

然后一步步看不同功能的影响。

对应测试命令:

# 生成一个假模型
python fake_resnet50.py
# 测试
python benchmark.py  --no_dynamic_batch --worker_num=N --worker_batch=M

MPS

多进程Torch + MPS。

进程数量 Batch Latency Throughput
1 1 4.54 ms 220.10 pic/s
4 1 8.05 ms 496.52 pic/s
8 1 13.97 ms 572.57 pic/s
16 1 28.15 ms 526.42 pic/s

可以看出MPS是很有效的,没有MPS时,多进程轮占时间片,多个进程吞吐基本也就卡在200多。

加了多进程后,多进程的kernel在同一context下调度。在8的时候达到最高。

Batching

基于以上数据,再看下Batching的影响。

进程数量 Batch Latency Throughput
4 1 8.05 ms 496.52 pic/s
1 4 6.43 ms 622.07 pic/s
进程数量 Batch Latency Throughput
8 1 13.97 ms 572.57 pic/s
1 8 10.43 ms 766.93 pic/s
进程数量 Batch Latency Throughput
16 1 28.15 ms 526.42 pic/s
1 16 18.03 ms 887.20 pic/s

可以看到MPS虽然对吞吐有帮助,但是有条件的话,Batching依旧是更好的选择。

MPS+Batching测Torch上限

在测一下Batch=32(或者其他比较高的数字都可),看一下torch框架的上限。

进程数量 Batch Latency Throughput
1 32 33.54 ms 953.60 pic/s
2 32 56.98 ms 1123.20 pic/s
3 32 78.96 ms 1215.47 pic/s
4 32 109.89 ms 1164.80 pic/s

即便batch比较大了,但MPS依旧有提升。

Dynamic Batching

实际应用中,琐碎请求会带来的性能下降。如果对于延迟的要求没有非常苛刻,那么是可以通过牺牲一部分延迟(用来打Batch),换取更高的吞吐(省钱)。

所以这轮测试的场景是,有N个数据(业务)进程,每个进程数据batch=1,达到MPS+Batching的上限吞吐。

先试一下对上述最大吞吐的case。128个数据(业务)进程,每个进程灌一张图,后台通过共享内存传输数据并打batch。

测试命令:

python benchmark.py --worker_num=128 --worker_batch=1 --max_batch_size=32 --model_num=3 --wait_time=0.01
数据(业务)进程 GPU模型进程 Latency Throughput
128 3 103.45 ms 1237.33 pic/s

能够达到极限延迟,但比最理想的情况增加了20%+的延迟。

找个小的场景试一下:

python benchmark.py --worker_num=8 --worker_batch=1 --max_batch_size=4 --model_num=2 --wait_time=0.003
数据(业务)进程 GPU模型进程 Latency Throughput
8 2 13.04 ms 613.40 pic/s

跟前面Torch测试的数字对比,可以理解成这case下8个请求进程被分成两组,总体基本能够达到batch=4的吞吐。

时间都去哪了?

针对1200+的最大吞吐场景分析了一下:

延迟由 batch + MPS 的 79 ms 增加至 Dynamic Batching 的 103ms.其中,

  • 19ms 左右是拼batch的时间,其中10ms是命令中的等待时间,还有8.3ms的np.concat时间。
  • 分割输出回各数据进程大概用了1ms。
  • 各种队列的等待时间。

总的来说没有不太合理的地方,在benchmark里我也把各部分时间收集和打出来了。

施工图

施工图

虽然源码不长(<1000行),结构也简单。但各种进程和通信还是有点多的。

程序启动时创建context进程,每个数据进程创建模型实例时:

  • context 进程会查看是否已存在对应的模型backend进程
    • 存在 -> 通过shared memory 建立连接
    • 不存在 -> 创建backend进程 -> 创建模型进程
  • 多个模型进程是为了充分利用MPS
  • 当用户进程中有多段模型时,会创建相应多个backend进程,比如识别+检测等等
  • 进程间不传输数据,仅传输shared memory地址和tensor元信息。

代码 & 相关说明

原理大概就是这个 shared_memory sample

测试代码:benchmark.py

使用样例:sample.py

  • 基本跟用pytorch差不多,load+forward。但是:
    • 要指定数据最大尺寸,用来分配shared memory
    • 最后要用一个Run函数启动,因为要提前初始化一些进程变量
    • 需要为模型指定name。当程序涉及到多个模型的时候,数据进程通过name连接到特定的模型进程。

Konwn issues

multiprocess.shared_memory在回收时,在一些系统下会报leak或已经释放的error/warning,一些系统正常。

错的系统我跑官方示例也有错。所以还不好判断是什么原因。如果觉得可以忍又不想烦可以用下面的命令禁掉。

export PYTHONWARNINGS=ignore

最后

If 有人感兴趣 and 我有时间

  • 支持一下TensorRT/TensorCore FP16,以及某个特定版本的TF。
  • 输出还没有全用shared memory(主要是我懒),所以大输出模型的 吞吐/延迟 会受到数据拷贝的影响。可以改进。。。
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed

Yun Liu 39 Sep 20, 2022
GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

564 Jan 02, 2023
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
Lbl2Vec learns jointly embedded label, document and word vectors to retrieve documents with predefined topics from an unlabeled document corpus.

Lbl2Vec Lbl2Vec is an algorithm for unsupervised document classification and unsupervised document retrieval. It automatically generates jointly embed

sebis - TUM - Germany 61 Dec 20, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022
Official code for the paper "Self-Supervised Prototypical Transfer Learning for Few-Shot Classification"

Self-Supervised Prototypical Transfer Learning for Few-Shot Classification This repository contains the reference source code and pre-trained models (

EPFL INDY 44 Nov 04, 2022
VOneNet: CNNs with a Primary Visual Cortex Front-End

VOneNet: CNNs with a Primary Visual Cortex Front-End A family of biologically-inspired Convolutional Neural Networks (CNNs). VOneNets have the followi

The DiCarlo Lab at MIT 99 Dec 22, 2022
CONditionals for Ordinal Regression and classification in tensorflow

Condor Ordinal regression in Tensorflow Keras Tensorflow Keras implementation of CONDOR Ordinal Regression (aka ordinal classification) by Garrett Jen

9 Jul 31, 2022
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

2.6k Jan 04, 2023
Implementation detail for paper "Multi-level colonoscopy malignant tissue detection with adversarial CAC-UNet"

Multi-level-colonoscopy-malignant-tissue-detection-with-adversarial-CAC-UNet Implementation detail for our paper "Multi-level colonoscopy malignant ti

CVSM Group - email: <a href=[email protected]"> 84 Nov 22, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project

Semantic Code Search Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project. The model

Chen Wu 24 Nov 29, 2022
Unoffical reMarkable AddOn for Firefox.

reMarkable for Firefox (Download) This repo converts the offical reMarkable Chrome Extension into a Firefox AddOn published here under the name "Unoff

Jelle Schutter 45 Nov 28, 2022
Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Database

Python cx_Oracle Notebooks, 2022 The repository contains Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Da

Christopher Jones 13 Dec 15, 2022
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W

Taihong Xiao 141 Apr 16, 2021
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

229 Dec 13, 2022
Library for converting from RGB / GrayScale image to base64 and back.

Library for converting RGB / Grayscale numpy images from to base64 and back. Installation pip install -U image_to_base_64 Conversion RGB to base 64 b

Vladimir Iglovikov 16 Aug 28, 2022
Isaac Gym Reinforcement Learning Environments

Isaac Gym Reinforcement Learning Environments

NVIDIA Omniverse 714 Jan 08, 2023
Official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks".

GN-Transformer AST This is the official repository for the paper "GN-Transformer: Fusing AST and Source Code information in Graph Networks". Data Prep

Cheng Jun-Yan 10 Nov 26, 2022