[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

Overview

TubeDETR: Spatio-Temporal Video Grounding with Transformers

WebsiteSTVG DemoPaper

PWC PWC PWC

This repository provides the code for our paper. This includes:

  • Software setup, data downloading and preprocessing instructions for the VidSTG, HC-STVG1 and HC-STVG2.0 datasets
  • Training scripts and pretrained checkpoints
  • Evaluation scripts and demo

Setup

Download FFMPEG and add it to the PATH environment variable. The code was tested with version ffmpeg-4.2.2-amd64-static. Then create a conda environment and install the requirements with the following commands:

conda create -n tubedetr_env python=3.8
conda activate tubedetr_env
pip install -r requirements.txt

Data Downloading

Setup the paths where you are going to download videos and annotations in the config json files.

VidSTG: Download VidOR videos and annotations from the VidOR dataset providers. Then download the VidSTG annotations from the VidSTG dataset providers. The vidstg_vid_path folder should contain a folder video containing the unzipped video folders. The vidstg_ann_path folder should contain both VidOR and VidSTG annotations.

HC-STVG: Download HC-STVG1 and HC-STVG2.0 videos and annotations from the HC-STVG dataset providers. The hcstvg_vid_path folder should contain a folder video containing the unzipped video folders. The hcstvg_ann_path folder should contain both HC-STVG1 and HC-STVG2.0 annotations.

Data Preprocessing

To preprocess annotation files, run:

python preproc/preproc_vidstg.py
python preproc/preproc_hcstvg.py
python preproc/preproc_hcstvgv2.py

Training

Download pretrained RoBERTa tokenizer and model weights in the TRANSFORMERS_CACHE folder. Download pretrained ResNet-101 model weights in the TORCH_HOME folder. Download MDETR pretrained model weights with ResNet-101 backbone in the current folder.

VidSTG To train on VidSTG, run:

python -m torch.distributed.launch --nproc_per_node=NUM_GPUS --use_env main.py --ema \
--load=pretrained_resnet101_checkpoint.pth --combine_datasets=vidstg --combine_datasets_val=vidstg \
--dataset_config config/vidstg.json --output-dir=OUTPUT_DIR

HC-STVG2.0 To train on HC-STVG2.0, run:

python -m torch.distributed.launch --nproc_per_node=NUM_GPUS --use_env main.py --ema \
--load=pretrained_resnet101_checkpoint.pth --combine_datasets=hcstvg --combine_datasets_val=hcstvg \
--v2 --dataset_config config/hcstvg.json --epochs=20 --output-dir=OUTPUT_DIR

HC-STVG1 To train on HC-STVG1, run:

python -m torch.distributed.launch --nproc_per_node=NUM_GPUS --use_env main.py --ema \
--load=pretrained_resnet101_checkpoint.pth --combine_datasets=hcstvg --combine_datasets_val=hcstvg \
--dataset_config config/hcstvg.json --epochs=40 --eval_skip=40 --output-dir=OUTPUT_DIR

Baselines

  • To remove time encoding, add --no_time_embed.
  • To remove the temporal self-attention in the space-time decoder, add --no_tsa.
  • To train from ImageNet initialization, pass an empty string to the argument --load and add --sted_loss_coef=5 --lr=2e-5 --text_encoder_lr=2e-5 --epochs=20 --lr_drop=20 for VidSTG or --epochs=60 --lr_drop=60 for HC-STVG1.
  • To train with a randomly initalized temporal self-attention, add --rd_init_tsa.
  • To train with a different spatial resolution (e.g. res=352) or temporal stride (e.g. k=4), add --resolution=224 or --stride=5.
  • To train with the slow-only variant, add --no_fast.
  • To train with alternative designs for the fast branch, add --fast=VARIANT.

Available Checkpoints

Training data parameters url size
MDETR init + VidSTG k=4 res=352 Drive 3.0GB
MDETR init + VidSTG k=2 res=224 Drive 3.0GB
ImageNet init + VidSTG k=4 res=352 Drive 3.0GB
MDETR init + HC-STVG2.0 k=4 res=352 Drive 3.0GB
MDETR init + HC-STVG2.0 k=2 res=224 Drive 3.0GB
MDETR init + HC-STVG1 k=4 res=352 Drive 3.0GB
ImageNet init + HC-STVG1 k=4 res=352 Drive 3.0GB

Evaluation

For evaluation only, simply run the same commands as for training with --resume=CHECKPOINT --eval. For this to be done on the test set, add --test (in this case predictions and attention weights are also saved).

Spatio-Temporal Video Grounding Demo

You can also use a pretrained model to infer a spatio-temporal tube on a video of your choice (VIDEO_PATH with potential START and END timestamps) given the natural language query of your choice (CAPTION) with the following command:

python demo_stvg.py --load=CHECKPOINT --caption_example CAPTION --video_example VIDEO_PATH --start_example=START --end_example=END --output-dir OUTPUT_PATH

Note that we also host an online demo at this link, the code of which is available at server_stvg.py and server_stvg.html.

Acknowledgements

This codebase is built on the MDETR codebase. The code for video spatial data augmentation is inspired by torch_videovision.

Citation

If you found this work useful, consider giving this repository a star and citing our paper as followed:

@inproceedings{yang2022tubedetr,
title={TubeDETR: Spatio-Temporal Video Grounding with Transformers},
author={Yang, Antoine and Miech, Antoine and Sivic, Josef and Laptev, Ivan and Schmid, Cordelia},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2022}}
Owner
Antoine Yang
PhD Student in Computer Vision at Inria Paris
Antoine Yang
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RMNet: Equivalently Removing Residual Connection from Networks This repository is the official implementation of "RMNet: Equivalently Removing Residua

184 Jan 04, 2023
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Junbin Xiao 50 Nov 24, 2022
Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

2D-TAN (Optimized) Introduction This is an optimized re-implementation repository for AAAI'2020 paper: Learning 2D Temporal Localization Networks for

Joya Chen 112 Dec 31, 2022
Learning based AI for playing multi-round Koi-Koi hanafuda card games. Have fun.

Koi-Koi AI Learning based AI for playing multi-round Koi-Koi hanafuda card games. Platform Python PyTorch PySimpleGUI (for the interface playing vs AI

Sanghai Guan 10 Nov 20, 2022
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 25, 2022
Code & Data for Enhancing Photorealism Enhancement

Enhancing Photorealism Enhancement Stephan R. Richter, Hassan Abu AlHaija, Vladlen Koltun Paper | Website (with side-by-side comparisons) | Video (Pap

Intelligent Systems Lab Org 1.1k Dec 31, 2022
Vector Quantization, in Pytorch

Vector Quantization - Pytorch A vector quantization library originally transcribed from Deepmind's tensorflow implementation, made conveniently into a

Phil Wang 665 Jan 08, 2023
MMRazor: a model compression toolkit for model slimming and AutoML

Documentation: https://mmrazor.readthedocs.io/ English | 简体中文 Introduction MMRazor is a model compression toolkit for model slimming and AutoML, which

OpenMMLab 899 Jan 02, 2023
Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption

SG-GAN TensorFlow implementation of SG-GAN. Prerequisites TensorFlow (implemented in v1.3) numpy scipy pillow Getting Started Train Prepare dataset. W

lplcor 61 Jun 07, 2022
CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning This repository contains the code and relevant instructions

XiaoMing 5 Aug 19, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re

Dominik Schmidt 31 Dec 21, 2022
Python implementation of "Single Image Haze Removal Using Dark Channel Prior"

##Dependencies pillow(~2.6.0) Numpy(~1.9.0) If the scripts throw AttributeError: __float__, make sure your pillow has jpeg support e.g. try: $ sudo ap

Joyee Cheung 73 Dec 20, 2022
一些经典的CTR算法的复现; LR, FM, FFM, AFM, DeepFM,xDeepFM, PNN, DCN, DCNv2, DIFM, AutoInt, FiBiNet,AFN,ONN,DIN, DIEN ... (pytorch, tf2.0)

CTR Algorithm 根据论文, 博客, 知乎等方式学习一些CTR相关的算法 理解原理并自己动手来实现一遍 pytorch & tf2.0 保持一颗学徒的心! Schedule Model pytorch tensorflow2.0 paper LR ✔️ ✔️ \ FM ✔️ ✔️ Fac

luo han 149 Dec 20, 2022
PyTorch implementation of PP-LCNet

PP-LCNet-Pytorch Pre-Trained Models Google Drive p018 Accuracy Models Top1 Top5 PPLCNet_x0_25 0.5186 0.7565 PPLCNet_x0_35 0.5809 0.8083 PPLCNet_x0_5 0

24 Dec 12, 2022
Online Multi-Granularity Distillation for GAN Compression (ICCV2021)

Online Multi-Granularity Distillation for GAN Compression (ICCV2021) This repository contains the pytorch codes and trained models described in the IC

Bytedance Inc. 299 Dec 16, 2022
Multi Agent Path Finding Algorithms

MATP-solver Simulator collision check path step random initial states or given states Traditional method Seperate A* algorithem Confict-based Search S

30 Dec 12, 2022
Analyzes your GitHub Profile and presents you with a report on how likely you are to become the next MLH Fellow!

Fellowship Prediction GitHub Profile Comparative Analysis Tool Built with BentoML Table of Contents: Features Disclaimer Technologies Used Contributin

Damir Temir 51 Dec 29, 2022
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN.

Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU.

Phil Wang 2.3k Jan 09, 2023
Source code for deep symbolic optimization.

Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th

Brenden Petersen 290 Dec 25, 2022
SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021) This repository contains the official PyTorch implementa

Qianli Ma 133 Jan 05, 2023