TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

Related tags

Deep LearningTAUFE
Overview

TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

Publication
Park, D., Song, H., Kim, M., and Lee, J., "Task-Agnostic Undesirable Feature Deactivation Using Out-of-Distribution Data," In Proceedings of the 35th NeurIPS, December 2021, Virtual. [Paper]

Citation

@article{park2021task,
  title={Task-Agnostic Undesirable Feature Deactivation Using Out-of-Distribution Data},
  author={Park, Dongmin and Song, Hwanjun and Kim, MinSeok and Lee, Jae-Gil},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}

1. Overview

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, which are not essential for solving the target task and are even imperceptible to a human, thereby resulting in poor generalization. Leveraging plenty of undesirable features in out-of-distribution (OOD) examples has emerged as a potential solution for de-biasing such features, and a recent study shows that softmax-level calibration of OOD examples can successfully remove the contribution of undesirable features to the last fully-connected layer of a classifier. However, its applicability is confined to the classification task, and its impact on a DNN feature extractor is not properly investigated. In this paper, we propose Taufe, a novel regularizer that deactivates many undesirable features using OOD examples in the feature extraction layer and thus removes the dependency on the task-specific softmax layer. To show the task-agnostic nature of Taufe, we rigorously validate its performance on three tasks, classification, regression, and a mix of them, on CIFAR-10, CIFAR-100, ImageNet, CUB200, and CAR datasets. The results demonstrate that Taufe consistently outperforms the state-of-the-art method as well as the baselines without regularization.

2. How to run

1. Image classification task

  • go to the folder 'code/classification/', and run STANDARD.py or TAUFE.py with arguments:
--in-data-name: the name of a target in-distribution dataset (string) # cifar10, cifar100, imgnet10
--ood-data-name: the name of an out-of-distribution dataset (string) # lsun, 80mTiny, svhn, imgnet990, places365
--n-samples: the number of training samples for few-shot learning (integer)
--n-class: the number of classes (int)
--taufe-weight: hyper-paramter lambda for taufe loss (float) # default:0.1

2. Semi-supervised learning task

  • go to the folder 'code/SSL/', and run MixMatch.py with arguments:
--in-data-name: the name of a target in-distribution dataset (string) # cifar10, cifar100
--ood-data-name: the name of an out-of-distribution dataset (string) # lsun, 80mTiny, svhn
--n-labeled: the number of labeled samples (integer)
--train-iteration: the number of training iterations (int)
--taufe-weight: hyper-paramter lambda for taufe loss (float) # default:0.1

3. Bounding-box regression task

  • go to the folder 'code/regression/', and run bbox_Standard.py or bbox_TAUFE.py with arguments:
--in-data-name: the name of a target in-distribution dataset (string) # cub200, car
--ood-data-name: the name of an out-of-distribution dataset (string) # imgnet, places365
--loss-type: the name of loss type (string) # L1, L1-IoU, D-IoU
--n-class: the number of classes (int)
--n-shots: the number of samples per class (int)
--taufe-weight: hyper-paramter lambda for taufe loss (float) # default:0.1

3. Requirement

  • Python 3
  • torch >= 1.3.0
Owner
KAIST Data Mining Lab
KAIST Data Mining Lab
PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 279 Jan 04, 2023
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

44 Sep 15, 2022
Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch

MeMOT - Pytorch (wip) Implementation of MeMOT - Multi-Object Tracking with Memory - in Pytorch. This paper is just one in a line of work, but importan

Phil Wang 15 May 09, 2022
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage This repository provides the off

Kakao Enterprise Corp. 68 Dec 17, 2022
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Jesper Wohlert 313 Dec 27, 2022
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
A setup script to generate ITK Python Wheels

ITK Python Package This project provides a setup.py script to build ITK Python binary packages and infrastructure to build ITK external module Python

Insight Software Consortium 59 Dec 14, 2022
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022
Human-Pose-and-Motion History

Human Pose and Motion Scientist Approach Eadweard Muybridge, The Galloping Horse Portfolio, 1887 Etienne-Jules Marey, Descent of Inclined Plane, Chron

Daito Manabe 47 Dec 16, 2022
A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data Overview Clustering analysis is widely utilized in single-cell RNA-seque

AI-Biomed @NSCC-gz 3 May 08, 2022
[CVPR22] Official codebase of Semantic Segmentation by Early Region Proxy.

RegionProxy Figure 2. Performance vs. GFLOPs on ADE20K val split. Semantic Segmentation by Early Region Proxy Yifan Zhang, Bo Pang, Cewu Lu CVPR 2022

Yifan 54 Nov 29, 2022
Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan

Phan Nguyen 1 Dec 16, 2021
[WWW 2022] Zero-Shot Stance Detection via Contrastive Learning

PT-HCL for Zero-Shot Stance Detection The code of this repository is constantly being updated... Please look forward to it! Introduction This reposito

Akuchi 12 Dec 21, 2022
Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction

GraviCap Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction. Gravity-Aware Monocular 3D Human-Object

Rishabh Dabral 15 Dec 09, 2022
An open source object detection toolbox based on PyTorch

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

Bo Chen 24 Dec 28, 2022
This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021
以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的斗地主ai

ddz-ai 介绍 斗地主是一种扑克游戏。游戏最少由3个玩家进行,用一副54张牌(连鬼牌),其中一方为地主,其余两家为另一方,双方对战,先出完牌的一方获胜。 ddz-ai以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的系统,使其经过大量训练后,能在实际游戏中获

freefuiiismyname 88 May 15, 2022
git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]

FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding (CVPR 2021) This repo contains the implementation of our state-of-the-art fewshot ob

233 Dec 29, 2022