Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Overview

Geometry-aware Instance-reweighted Adversarial Training

This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (https://openreview.net/forum?id=iAX0l6Cz8ub) (ICLR oral)
Jingfeng Zhang, Jianing Zhu, Gang Niu, Bo Han, Masashi Sugiyama and Mohan Kankanhalli

What is the nature of adversarial training?

Adversarial training employs adversarial data for updating the models. For more details of the nature of adversarial training, refer to this FAT's GitHub for the preliminary.
In this repo, you will know:

FACT 1: Model Capacity is NOT enough for adversarial training.

We plot standard training error (Natural) and adversarial training error (PGD-10) over the training epochs of the standard AT (Madry's) on CIFAR-10 dataset. *Left panel*: AT on different sizes of network (blue lines) and standard training (ST, the red line) on ResNet-18. *Right panel*: AT on ResNet-18 under different perturbation bounds eps_train.

Refer to FAT's GitHub for the standard AT by setting

python FAT.py --epsilon 0.031 --net 'resnet18' --tau 10 --dynamictau False

OR using codes in this repo by setting

python GAIRAT.py --epsilon 0.031 --net 'resnet18' --Lambda 'inf'

to recover the standard AT (Madry's).

The over-parameterized models that fit nataral data entirely in the standard training (ST) are still far from enough for fitting adversarial data in adversarial training (AT). Compared with ST fitting the natural data points, AT smooths the neighborhoods of natural data, so that adversarial data consume significantly more model capacity than natural data.

The volume of this neighborhood is exponentially large w.r.t. the input dimension , even if is small.

Under the computational budget of 100 epochs, the networks hardly reach zero error on the adversarial training data.

FACT 2: Data points are inherently different.

More attackable data are closer to the decision boundary.

More guarded data are farther away from the decision boundary.

More attackable data (lighter red and blue) are closer to the decision boundary; more guarded data (darker red and blue) are farther away from the decision boundary. *Left panel*: Two toy examples. *Right panel*: The model’s output distribution of two randomly selected classes from the CIFAR-10 dataset. The degree of robustness (denoted by the color gradient) of a data point is calculated based on the least number of iterations κ that PGD needs to find its misclassified adversarial variant.

Therefore, given the limited model capacity, we should treat data differently for updating the model in adversarial training.

IDEA: Geometrically speaking, a natural data point closer to/farther from the class boundary is less/more robust, and the corresponding adversarial data point should be assigned with larger/smaller weight for updating the model.
To implement the idea, we propose geometry-aware instance-reweighted adversarial training (GAIRAT), where the weights are based on how difficult it is to attack a natural data point.
"how difficult it is to attack a natural data point" is approximated by the number of PGD steps that the PGD method requires to generate its misclassified adversarial variant.

The illustration of GAIRAT. GAIRAT explicitly gives larger weights on the losses of adversarial data (larger red), whose natural counterparts are closer to the decision boundary (lighter blue). GAIRAT explicitly gives smaller weights on the losses of adversarial data (smaller red), whose natural counterparts are farther away from the decision boundary (darker blue).

GAIRAT's Implementation

For updating the model, GAIRAT assigns instance dependent weight (reweight) on the loss of the adversarial data (found in GAIR.py).
The instance dependent weight depends on num_steps, which indicates the least PGD step numbers needed for the misclassified adversarial variant.

Preferred Prerequisites

  • Python (3.6)
  • Pytorch (1.2.0)
  • CUDA
  • numpy
  • foolbox

Running GAIRAT, GAIR-FAT on benchmark datasets (CIFAR-10 and SVHN)

Here are examples:

  • Train GAIRAT and GAIR-FAT on WRN-32-10 model on CIFAR-10 and compare our results with AT, FAT
CUDA_VISIBLE_DEVICES='0' python GAIRAT.py 
CUDA_VISIBLE_DEVICES='0' python GAIR_FAT.py 
  • How to recover the original FAT and AT using our code?
CUDA_VISIBLE_DEVICES='0' python GAIRAT.py --Lambda 'inf' --output_dir './AT_results' 
CUDA_VISIBLE_DEVICES='0' python GAIR_FAT.py --Lambda 'inf' --output_dir './FAT_results' 
  • Evaluations After running, you can find ./GAIRAT_result/log_results.txt and ./GAIR_FAT_result/log_results.txt for checking Natural Acc. and PGD-20 test Acc.
    We also evaluate our models using PGD+. PGD+ is the same as PG_ours in RST repo. PG_ours is PGD with 5 random starts, and each start has 40 steps with step size 0.01 (It has 40 × 5 = 200 iterations for each test data). Since PGD+ is computational defense, we only evaluate the best checkpoint bestpoint.pth.tar and the last checkpoint checkpoint.pth.tar in the folders GAIRAT_result and GAIR_FAT_result respectively.
CUDA_VISIBLE_DEVICES='0' python eval_PGD_plus.py --model_path './GAIRAT_result/bestpoint.pth.tar' --output_suffix='./GAIRAT_PGD_plus'
CUDA_VISIBLE_DEVICES='0' python eval_PGD_plus.py --model_path './GAIR_FAT_result/bestpoint.pth.tar' --output_suffix='./GAIR_FAT_PGD_plus'

White-box evaluations on WRN-32-10

Defense (best checkpoint) Natural Acc. PGD-20 Acc. PGD+ Acc.
AT(Madry) 86.92 % 0.24% 51.96% 0.21% 51.28% 0.23%
FAT 89.16% 0.15% 51.24% 0.14% 46.14% 0.19%
GAIRAT 85.75% 0.23% 57.81% 0.54% 55.61% 0.61%
GAIR-FAT 88.59% 0.12% 56.21% 0.52% 53.50% 0.60%
Defense (last checkpoint) Natural Acc. PGD-20 Acc. PGD+ Acc.
AT(Madry) 86.62 % 0.22% 46.73% 0.08% 46.08% 0.07%
FAT 88.18% 0.19% 46.79% 0.34% 45.80% 0.16%
GAIRAT 85.49% 0.25% 53.76% 0.49% 50.32% 0.48%
GAIR-FAT 88.44% 0.10% 50.64% 0.56% 47.51% 0.51%

For more details, refer to Table 1 and Appendix C.8 in the paper.

Benchmarking robustness with additional 500K unlabeled data on CIFAR-10 dataset.

In this repo, we unleash the full power of our geometry-aware instance-reweighted methods by incorporating 500K unlabeled data (i.e., GAIR-RST). In terms of both evaluation metrics, i.e., generalization and robustness, we can obtain the best WRN-28-10 model among all public available robust models.

  • How to create the such the superior model from scratch?
  1. Download ti_500K_pseudo_labeled.pickle containing our 500K pseudo-labeled TinyImages from this link (Auxillary data provided by Carmon et al. 2019). Store ti_500K_pseudo_labeled.pickle into the folder ./data
  2. You may need mutilple GPUs for running this.
chmod +x ./GAIR_RST/run_training.sh
./GAIR_RST/run_training.sh
  1. We evaluate the robust model using natural test accuracy on natural test data and roubust test accuracy by Auto Attack. Auto Attack is combination of two white box attacks and two black box attacks.
chmod +x ./GAIR_RST/autoattack/examples/run_eval.sh

White-box evaluations on WRN-28-10

We evaluate the robustness on CIFAR-10 dataset under auto-attack (Croce & Hein, 2020).

Here we list the results using WRN-28-10 on the leadboard and our results. In particular, we use the test eps = 0.031 which keeps the same as the training eps of our GAIR-RST.

CIFAR-10 - Linf

The robust accuracy is evaluated at eps = 8/255, except for those marked with * for which eps = 0.031, where eps is the maximal Linf-norm allowed for the adversarial perturbations. The eps used is the same set in the original papers.
Note: ‡ indicates models which exploit additional data for training (e.g. unlabeled data, pre-training).

# method/paper model architecture clean report. AA
1 (Gowal et al., 2020) authors WRN-28-10 89.48 62.76 62.80
2 (Wu et al., 2020b) available WRN-28-10 88.25 60.04 60.04
- GAIR-RST (Ours)* available WRN-28-10 89.36 59.64 59.64
3 (Carmon et al., 2019) available WRN-28-10 89.69 62.5 59.53
4 (Sehwag et al., 2020) available WRN-28-10 88.98 - 57.14
5 (Wang et al., 2020) available WRN-28-10 87.50 65.04 56.29
6 (Hendrycks et al., 2019) available WRN-28-10 87.11 57.4 54.92
7 (Moosavi-Dezfooli et al., 2019) authors WRN-28-10 83.11 41.4 38.50
8 (Zhang & Wang, 2019) available WRN-28-10 89.98 60.6 36.64
9 (Zhang & Xu, 2020) available WRN-28-10 90.25 68.7 36.45

The results show our GAIR-RST method can facilitate a competitive model by utilizing additional unlabeled data.

Wanna download our superior model for other purposes? Sure!

We welcome various attack methods to attack our defense models. For cifar-10 dataset, we normalize all images into [0,1].

Download our pretrained models checkpoint-epoch200.pt into the folder ./GAIR_RST/GAIR_RST_results through this Google Drive link.

You can evaluate this pretrained model through ./GAIR_RST/autoattack/examples/run_eval.sh

Reference

@inproceedings{
zhang2021_GAIRAT,
title={Geometry-aware Instance-reweighted Adversarial Training},
author={Jingfeng Zhang and Jianing Zhu and Gang Niu and Bo Han and Masashi Sugiyama and Mohan Kankanhalli},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=iAX0l6Cz8ub}
}

Contact

Please contact [email protected] or [email protected] and [email protected] if you have any question on the codes.

Owner
Jingfeng
Jingfeng Zhang, Postdoc (2021 - ) at RIKEN-AIP, Tokyo; Ph.D. (2016- 2020) from the School of Computing at the National University of Singapore.
Jingfeng
ColBERT: Contextualized Late Interaction over BERT (SIGIR'20)

Update: if you're looking for ColBERTv2 code, you can find it alongside a new simpler API, in the branch new_api. ColBERT ColBERT is a fast and accura

Stanford Future Data Systems 637 Jan 08, 2023
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
PyTorch implementation of DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images

DARDet PyTorch implementation of "DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images", [pdf]. Highlights: 1. We develop a new dense

41 Oct 23, 2022
PyTorch implementation of "Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning"

Transparency-by-Design networks (TbD-nets) This repository contains code for replicating the experiments and visualizations from the paper Transparenc

David Mascharka 351 Nov 18, 2022
Fully Convolutional Networks for Semantic Segmentation by Jonathan Long*, Evan Shelhamer*, and Trevor Darrell. CVPR 2015 and PAMI 2016.

Fully Convolutional Networks for Semantic Segmentation This is the reference implementation of the models and code for the fully convolutional network

Evan Shelhamer 3.2k Jan 08, 2023
VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

Hao Tan 74 Dec 03, 2022
A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

ICT.MIRACLE lab 75 Dec 26, 2022
TriMap: Large-scale Dimensionality Reduction Using Triplets

TriMap TriMap is a dimensionality reduction method that uses triplet constraints to form a low-dimensional embedding of a set of points. The triplet c

Ehsan Amid 235 Dec 24, 2022
Nicholas Lee 3 Jan 09, 2022
A full-fledged version of Pix2Seq

Stable-Pix2Seq A full-fledged version of Pix2Seq What it is. This is a full-fledged version of Pix2Seq. Compared with unofficial-pix2seq, stable-pix2s

peng gao 205 Dec 27, 2022
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022
A python script to dump all the challenges locally of a CTFd-based Capture the Flag.

A python script to dump all the challenges locally of a CTFd-based Capture the Flag. Features Connects and logins to a remote CTFd instance. Dumps all

Podalirius 77 Dec 07, 2022
The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

TimeSformer This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provid

Facebook Research 1k Dec 31, 2022
YOLOv2 in PyTorch

YOLOv2 in PyTorch NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). This is a PyTorch implement

Long Chen 1.5k Jan 02, 2023
offical implement of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021

LifelongReID Offical implementation of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021 by Nan Pu, Wei Chen, Yu L

PeterPu 76 Dec 08, 2022
Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters"

Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters" Pipeline of CLIP-Adapter CLIP-Adapter is a drop-in modul

peng gao 157 Dec 26, 2022
This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022
This repository contains the source code for the paper "DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks",

DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks Project Page | Video | Presentation | Paper | Data L

Facebook Research 281 Dec 22, 2022
MLOps will help you to understand how to build a Continuous Integration and Continuous Delivery pipeline for an ML/AI project.

page_type languages products description sample python azure azure-machine-learning-service azure-devops Code which demonstrates how to set up and ope

1 Nov 01, 2021
A Domain-Agnostic Benchmark for Self-Supervised Learning

DABS: A Domain Agnostic Benchmark for Self-Supervised Learning This repository contains the code for DABS, a benchmark for domain-agnostic self-superv

Alex Tamkin 81 Dec 09, 2022