The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

Overview

CircleCI Github Actions Codecov Documentation Status Pypi Version Black Python Versions DOI

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory.

Additionally, contributions at the algorithm level are available in the package mlresearch.

Installation

A Python distribution of version 3.8 or 3.9 is required to run this project. Due to the computational limitations of the free tiers in CI/CD platforms, currently we cannot ensure compatibility with earlier Python versions.

ML-Research requires:

  • numpy (>= 1.14.6)
  • pandas (>= 1.3.5)
  • sklearn (>= 1.0.0)
  • imblearn (>= 0.8.0)
  • rich (>= 10.16.1)
  • matplotlib (>= 2.2.3)
  • seaborn (>= 0.9.0)
  • rlearn (>= 0.2.1)
  • pytorch (>= 1.10.1)
  • torchvision (>= 0.11.2)
  • pytorch_lightning (>= 1.5.8)

User Installation

If you already have a working installation of numpy and scipy, the easiest way to install scikit-learn is using pip :

pip install -U ml-research

The documentation includes more detailed installation instructions.

Installing from source

The following commands should allow you to setup the development version of the project with minimal effort:

# Clone the project.
git clone https://github.com/joaopfonseca/ml-research.git
cd ml-research

# Create and activate an environment 
make environment 
conda activate mlresearch # Adapt this line accordingly if you're not running conda

# Install project requirements and the research package
pip install .[tests,docs]

Citing ML-Research

If you use ML-Research in a scientific publication, we would appreciate citations to the following paper:

@article{Fonseca2021,
  doi = {10.3390/RS13132619},
  url = {https://doi.org/10.3390/RS13132619},
  keywords = {SMOTE,active learning,artificial data generation,land use/land cover classification,oversampling},
  year = {2021},
  month = {jul},
  publisher = {Multidisciplinary Digital Publishing Institute},
  volume = {13},
  pages = {2619},
  author = {Fonseca, Joao and Douzas, Georgios and Bacao, Fernando},
  title = {{Increasing the Effectiveness of Active Learning: Introducing Artificial Data Generation in Active Learning for Land Use/Land Cover Classification}},
  journal = {Remote Sensing}
}
You might also like...
A collection of 100 Deep Learning images and visualizations
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

Easily pull telemetry data and create beautiful visualizations for analysis.
Easily pull telemetry data and create beautiful visualizations for analysis.

This repository is a work in progress. Anything and everything is subject to change. Porpo Table of Contents Porpo Table of Contents General Informati

Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.
Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation. Intel iHD GPU (iGPU) support. NVIDIA GPU (dGPU) support.

mtomo Multiple types of NN model optimization environments. It is possible to directly access the host PC GUI and the camera to verify the operation.

The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible
The pyrelational package offers a flexible workflow to enable active learning with as little change to the models and datasets as possible

pyrelational is a python active learning library developed by Relation Therapeutics for rapidly implementing active learning pipelines from data management, model development (and Bayesian approximation), to creating novel active learning strategies.

Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.
Rayvens makes it possible for data scientists to access hundreds of data services within Ray with little effort.

Rayvens augments Ray with events. With Rayvens, Ray applications can subscribe to event streams, process and produce events. Rayvens leverages Apache

Memoized coduals - Shows that it is possible to implement reverse mode autodiff using a variation on the dual numbers called the codual numbers This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh

Comments
  • Consider modifying default BYOL hyper-parameters for smaller batch sizes

    Consider modifying default BYOL hyper-parameters for smaller batch sizes

    Applicable to both BYOL and SimSiam: Some hyperparameters might need to be added. Some are hard-coded to the default values.

    Taken from the BYOL paper: Screenshot from 2022-03-18 17-54-43

    opened by joaopfonseca 1
  • Remove computer vision models, augmentations and datasets

    Remove computer vision models, augmentations and datasets

    They will be removed in the next release since:

    1. I'm not going to used these methods anytime soon and I don't have the time to test them properly
    2. They are out of scope of the library. It is meant to be used for machine learning techniques, focused on tabular data. In the feature it may be worth considering the development of another library for computer vision, for example.
    3. Setting Pytorch as a dependency for a reduced part of the library isn't particularly efficient.
    wontfix 
    opened by joaopfonseca 0
  • Host all raw data from datasets submodule elsewhere

    Host all raw data from datasets submodule elsewhere

    With Python 3.11, downloading some datasets returns an SSL error (when unsafe legacy renegotiation disabled). It happens when the server doesn't support "RFC 5746 secure renegotiation" and the client is using OpenSSL 3, which enforces that standard by default (source).

    Hosting the raw data elsewhere should fix this issue.

    bug 
    opened by joaopfonseca 0
  • Review and add examples to documentation

    Review and add examples to documentation

    The readthedocs page is getting a bit outdated:

    • [x] Add support for Python 3.10
    • [ ] Add support for Python 3.11
    • [ ] Check for missing, deleted or renamed functions and objects
    • [ ] Review content as a whole
    • [ ] Add examples to documentation
    • [ ] Add dependency groups to documentation
    • [ ] README contains dependencies that will no longer be used
    documentation 
    opened by joaopfonseca 0
Releases(v0.4a2)
  • v0.4a2(Jan 2, 2023)

    NOTE: This pre-release contains implementations of algorithms for Self-supervised learning (BYOL and SimSiam). This release also contains objects to download image data from Pytorch and general definitions for image augmentations. They will be removed in the next release since:

    1. I'm not going to used these methods anytime soon and I don't have the time to test them properly
    2. They are out of scope of the library. It is meant to be used for machine learning techniques, focused on tabular data. In the feature it may be worth considering the development of another library for computer vision, for example.
    3. Setting Pytorch as a dependency for a reduced part of the library isn't particularly efficient.

    Full Changelog: https://github.com/joaopfonseca/ml-research/compare/v0.4a1...v0.4a2

    Source code(tar.gz)
    Source code(zip)
  • v0.4a1(Apr 14, 2022)

  • v0.3.4(Feb 14, 2022)

  • v0.3.3(Feb 14, 2022)

  • v0.3.2(Feb 14, 2022)

  • v0.3.1(Feb 14, 2022)

  • v0.3.0(Feb 14, 2022)

  • v0.2.1(Feb 14, 2022)

  • v0.2.0(Feb 14, 2022)

  • 0.1.0(Feb 14, 2022)

Owner
João Fonseca
PhD student | Researcher | Invited lecturer @ NOVA Information Management School
João Fonseca
PySOT - SenseTime Research platform for single object tracking, implementing algorithms like SiamRPN and SiamMask.

PySOT is a software system designed by SenseTime Video Intelligence Research team. It implements state-of-the-art single object tracking algorit

STVIR 4.1k Dec 29, 2022
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
Code for ICCV2021 paper PARE: Part Attention Regressor for 3D Human Body Estimation

PARE: Part Attention Regressor for 3D Human Body Estimation [ICCV 2021] PARE: Part Attention Regressor for 3D Human Body Estimation, Muhammed Kocabas,

Muhammed Kocabas 277 Jan 03, 2023
Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala, S. Krastanov, M. Eichenfield, and D. R. Englund, 2022

Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala,

Stefan Krastanov 1 Jan 17, 2022
Joint project of the duo Hacker Ninjas

Project Smoothie Společný projekt dua Hacker Ninjas. První pokus o hříčku po třech týdnech učení se programování. Jakub Kolář e:\

Jakub Kolář 2 Jan 07, 2022
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Packt 1.5k Jan 03, 2023
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

AutoViz and Auto_ViML 397 Dec 30, 2022
Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs at the moment, Cycles and Arnold supported

GafferHaven Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs are supported at the moment, in Cycles and Arnold lights.

Jakub Vondra 6 Jan 26, 2022
A pure PyTorch implementation of the loss described in "Online Segment to Segment Neural Transduction"

ssnt-loss ℹ️ This is a WIP project. the implementation is still being tested. A pure PyTorch implementation of the loss described in "Online Segment t

張致強 1 Feb 09, 2022
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
A complete, self-contained example for training ImageNet at state-of-the-art speed with FFCV

ffcv ImageNet Training A minimal, single-file PyTorch ImageNet training script designed for hackability. Run train_imagenet.py to get... ...high accur

FFCV 92 Dec 31, 2022
A Fast Sequence Transducer Implementation with PyTorch Bindings

transducer A Fast Sequence Transducer Implementation with PyTorch Bindings. The corresponding publication is Sequence Transduction with Recurrent Neur

Awni Hannun 184 Dec 18, 2022
Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER 🦌 🦒 Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEE

33 Dec 23, 2022
Adversarial Adaptation with Distillation for BERT Unsupervised Domain Adaptation

Knowledge Distillation for BERT Unsupervised Domain Adaptation Official PyTorch implementation | Paper Abstract A pre-trained language model, BERT, ha

Minho Ryu 29 Nov 30, 2022
Dynamic Realtime Animation Control

Our project is targeted at making an application that dynamically detects the user’s expressions and gestures and projects it onto an animation software which then renders a 2D/3D animation realtime

Harsh Avinash 10 Aug 01, 2022
CMT: Convolutional Neural Networks Meet Vision Transformers

CMT: Convolutional Neural Networks Meet Vision Transformers [arxiv] 1. Introduction This repo is the CMT model which impelement with pytorch, no refer

FlyEgle 83 Dec 30, 2022
Differentiable Annealed Importance Sampling (DAIS)

Differentiable Annealed Importance Sampling (DAIS) This repository contains the code to reproduce the DAIS results from the paper Differentiable Annea

Guodong Zhang 6 Dec 26, 2021
A GridMixup augmentation, inspired by GridMask and CutMix

GridMixup A GridMixup augmentation, inspired by GridMask and CutMix Easy install pip install git+https://github.com/IlyaDobrynin/GridMixup.git Overvie

IlyaDo 42 Dec 28, 2022
Self Driving RC Car Code

Derp Learning Derp Learning is a Python package that collects data, trains models, and then controls an RC car for track racing. Hardware You will nee

Not Karol 39 Dec 07, 2022