python-timbl, originally developed by Sander Canisius, is a Python extension module wrapping the full TiMBL C++ programming interface. With this module, all functionality exposed through the C++ interface is also available to Python scripts. Being able to access the API from Python greatly facilitates prototyping TiMBL-based applications.

Overview
http://applejack.science.ru.nl/lamabadge.php/python-timbl Project Status: Active – The project has reached a stable, usable state and is being actively developed.

README: python-timbl

Authors: Sander Canisius, Maarten van Gompel
Contact: [email protected]
Web site: https://github.com/proycon/python-timbl/

python-timbl is a Python extension module wrapping the full TiMBL C++ programming interface. With this module, all functionality exposed through the C++ interface is also available to Python scripts. Being able to access the API from Python greatly facilitates prototyping TiMBL-based applications.

This is the 2013 release by Maarten van Gompel, building on the 2006 release by Sander Canisius. For those used to the old library, there is one backwards-incompatible change, adapt your scripts to use import timblapi instead of import timbl, as the latter is now a higher-level interface.

Since 2020, this only supports Python 3, Python 2 support has been deprecated.

License

python-timbl is free software, distributed under the terms of the GNU General Public License. Please cite TiMBL in publication of research that uses TiMBL.

Installation

python-timbl is distributed as part of LaMachine (https://proycon.github.io/LaMachine), which significantly simplifies compilation and installation. The remainder of the instructions in this section refer to manual compilation and installation.

python-timbl depends on two external packages, which must have been built and/or installed on your system in order to successfully build python-timbl. The first is TiMBL itself; download its tarball from TiMBL's homepage and follow the installation instructions, recent Ubuntu/Debian users will find timbl in their distribution's package repository. In the remainder of this section, it is assumed that $TIMBL_HEADERS points to the directory that contains timbl/TimblAPI.h, and $TIMBL_LIBS the directory that has contains the Timbl libraries. Note that Timbl itself depends on additional dependencies.

The second prerequisite is Boost.Python, a library that facilitates writing Python extension modules in C++. Many Linux distributions come with prebuilt packages of Boost.Python. If so, install this package; on Ubuntu/Debian this can be done as follows:

$ sudo apt-get install libboost-python libboost-python-dev

If not, refer to the Boost installation instructions to build and install Boost.Python manually. In the remainder of this section, let $BOOST_HEADERS refer to the directory that contains the Boost header files, and $BOOST_LIBS to the directory that contains the Boost library files. If you installed Boost.Python with your distribution's package manager, these directories are probably /usr/include and /usr/lib respectively.

If both prerequisites have been installed on your system, python-timbl can be obtained through github:

$ git clone git://github.com/proycon/python-timbl.git
$ cd python-timbl

and can then be built and installed with the following command:

$ sudo python3 setup.py \
       build_ext --boost-include-dir=$BOOST_HEADERS \
                 --boost-library-dir=$BOOST_LIBS \
                 --timbl-include-dir=$TIMBL_HEADERS  \
                 --timbl-library-dir=$TIMBL_LIBS \
       install --prefix=/dir/to/install/in

This is the verbose variant, if default locations are used then the following may suffice already:

$ sudo python setup3.py install

The --prefix option to the install command denotes the directory in which the module is to be installed. If you have the appropriate system permissions, you can leave out this option. The module will then be installed in the Python system tree. Otherwise, make sure that the installation directory is in the module search path of your Python system.

Usage

python-timbl offers two interface to the timbl API. A low-level interface contained in the module timblapi, which is very much like the C++ library, and a high-level object oriented interface in the timbl module, which offers a TimblClassifier class.

timbl.TimblClassifier: High-level interface

The high-level interface features as TimblClassifier class which can be used for training and testing classifiers. An example is provided in example.py, parts of it will be discussed here.

After importing the necessary module, the classifier is instantiated by passing it an identifier which will be used as prefix used for all filenames written, and a string containing options just as you would pass them to Timbl:

import timbl
classifier = timbl.TimblClassifier("wsd-bank", "-a 0 -k 1" )

Normalization of theclass distribution is enabled by default (regardless of the -G option to Timbl), pass normalize=False to disable it.

Training instances can be added using the append(featurevector, classlabel) method:

classifier.append( (1,0,0), 'financial')
classifier.append( (0,1,0), 'furniture')
classifier.append( (0,0,1), 'geographic')

Subsequently, you invoke the actual training, note that at each step Timbl may output considerable details about what it is doing to standard error output:

classifier.train()

The results of this training is an instance base file, which you can save to file so you can load it again later:

classifier.save()

classifier = timbl.TimblClassifier("wsd-bank", "-a 0 -k 1" )
classifier.load()

The main advantage of the Python library is the fact that you can classify instances on the fly as follows, just pass a feature vector and optionally also a class label to classify(featurevector, classlabel):

classlabel, distribution, distance = classifier.classify( (1,0,0) )

You can also create a test file and test it all at once:

classifier = timbl.TimblClassifier("wsd-bank", "-a 0 -k 1" )
classifier.load()
classifier.addinstance("testfile", (1,0,0),'financial' ) #addinstance can be used to add instances to external files (use append() for training)
classifier.addinstance("testfile", (0,1,0),'furniture' )
classifier.addinstance("testfile", (0,0,1),'geograpic' )
classifier.addinstance("testfile", (1,1,0),'geograpic' ) #this one will be wrongly classified as financial & furniture
classifier.test("testfile")

print "Accuracy: ", classifier.getAccuracy()

Real multithreading support

If you are writing a multithreaded Python application (i.e. using the threading module) and want to benefit from actual concurrency, side-stepping Python's Global Interpreter Lock, add the parameter threading=True when invoking the TimblClassifier constructor. Take care to instantiate TimblClassifier before threading. You can then call TimblClassifier.classify() from within your threads. Concurrency only exists for this classify method.

If you do not set this option, everything will still work fine, but you won't benefit from actual concurrency due to Python's the Global Interpret Lock.

timblapi: Low-level interface

For documentation on the low level timblapi interface you can consult the TiMBL API guide. Although this document actually describes the C++ interface to TiMBL, the latter is similar enough to its Python binding for this document to be a useful reference for python-timbl as well. For most part, the Python TiMBL interface follows the C++ version closely. The differences are listed below.

Naming style

In the C++ interface, method names are in UpperCamelCase; for example, Classify, SetOptions, etc. In contrast, the Python interface uses lowerCamelCase: classify, setOptions, etc. Method overloading TiMBL's Classify methods use the C++ method overloading feature to provide three different kinds of outputs. Method overloading is non-existant in Python though; therefore, python-timbl has three differently named methods to mirror the functionality of the overloaded Classify method. The mapping is as follows:

    # bool TimblAPI::Classify(const std::string& Line,
    #                         std::string& result);
    #
    def TimblAPI.classify(line) -> bool, result

    #
    # bool TimblAPI::Classify(const std::string& Line,
    #                         std::string& result,
    #                         double& distance);
    #
    def TimblAPI.classify2(line) -> bool, string, distance

    #
    # bool TimblAPI::Classify(const std::string& Line,
    #                         std::string& result,
    #                         std::string& Distrib,
    #                         double& distance);
    #
    def TimblAPI.classify3(line, bool normalize=true,int requireddepth=0) -> bool, string, dictionary, distance

#Thread-safe version of the above, releases and reacquires Python's Global Interprer Lock
    def TimblAPI.classify3safe(line, normalize, requireddepth=0) -> bool, string, dictionary, distance

Note that the classify3 function returned a string representation of the distribution in versions of python-timbl prior to 2015.08.12, now it returns an actual dictionary. When using classify3safe (the thread-safe version) , ensure you first call initthreads after instantiating timblapi, and manually call the initthreading() method.

Python-only methods

Three TiMBL API methods print information to a standard C++ output stream object (ShowBestNeighbors, ShowOptions, ShowSettings, ShowSettings). In the Python interface, these methods will only work with Python (stream) objects that have a fileno method returning a valid file descriptor. Alternatively, three new methods are provided (bestNeighbo(u)rs, options, settings); these methods return the same information as a Python string object.

scikit-learn wrapper

A wrapper for use in scikit-learn has been added. It was designed for use in scikit-learn Pipeline objects. The wrapper is not finished and has to date only been tested on sparse data. Note that TiMBL does not work well with large amounts of features. It is suggested to reduce the amount of features to a number below 100 to keep system performance reasonable. Use on servers with large amounts of memory and processing cores advised.

You might also like...
Pytorch implementation of the popular Improv RNN model originally proposed by the Magenta team.
Pytorch implementation of the popular Improv RNN model originally proposed by the Magenta team.

Pytorch Implementation of Improv RNN Overview This code is a pytorch implementation of the popular Improv RNN model originally implemented by the Mage

Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Create UIs for prototyping your machine learning model in 3 minutes
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning.
Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning.

Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning Installation

Myia prototyping

Myia Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their g

An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.
An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models.

An optimization and data collection toolbox for convenient and fast prototyping of computationally expensive models. Hyperactive: is very easy to lear

Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.
Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my

Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Realistic Full-Body Anonymization with Surface-Guided GANs This is the official

Comments
  • classify() method does not return correct distribution

    classify() method does not return correct distribution

    I'm using the LaMachine virtual environment on Ponyland

    classifier = timbl.TimblClassifier("pl_type.master", "-mO:I1 -k 5 -G 0")

    Should return probability distribution that adds up to 1, but ...

    classifier.classify(("administrateur", "n", "i", "=", "str", "a", "=", "t", "|", "r", "-", "-", "+", "r"))

    returns:

    {'EN': 1, 'S': 1}

    But the same classifier returns the correct distribution if the test() method is used instead:

    { EN 0.0526316, S 0.947368 }

    bug question ready 
    opened by timjzee 10
  • Compatibility with latest timbl broken!

    Compatibility with latest timbl broken!

    
    gcc -pthread -Wno-unused-result -DNDEBUG -g -fwrapv -O3 -Wall -Wstrict-prototypes -g -fstack-protector --param=ssp-buffer-size=4 -Wformat -Werror=format-security -fPIC -I/usr/include -I/home/travis/virtualenv/python3.4.6/include -I/usr/include/libxml2 -I/opt/python/3.4.6/include/python3.4m -c src/timblapi.cc -o build/temp.linux-x86_64-3.4/src/timblapi.o
    
    cc1plus: warning: command line option ‘-Wstrict-prototypes’ is valid for C/ObjC but not for C++ [enabled by default]
    
    In file included from /usr/include/c++/4.8/unordered_map:35:0,
    
                     from /home/travis/virtualenv/python3.4.6/include/timbl/Instance.h:35,
    
                     from /home/travis/virtualenv/python3.4.6/include/timbl/TimblAPI.h:38,
    
                     from src/timblapi.h:51,
    
                     from src/timblapi.cc:47:
    
    /usr/include/c++/4.8/bits/c++0x_warning.h:32:2: error: #error This file requires compiler and library support for the ISO C++ 2011 standard. This support is currently experimental, and must be enabled with the -std=c++11 or -std=gnu++11 compiler options.
    
     #error This file requires compiler and library support for the \
    
      ^
    
    In file included from /home/travis/virtualenv/python3.4.6/include/timbl/TimblAPI.h:38:0,
    
                     from src/timblapi.h:51,
    
                     from src/timblapi.cc:47:
    
    /home/travis/virtualenv/python3.4.6/include/timbl/Instance.h:211:11: error: ‘unordered_map’ in namespace ‘std’ does not name a type
    
       typedef std::unordered_map< size_t, ValueClass *> IVCmaptype;
    
               ^
    
    /home/travis/virtualenv/python3.4.6/include/timbl/Instance.h:221:5: error: ‘IVCmaptype’ does not name a type
    
         IVCmaptype ValuesMap;
    
         ^
    
    error: command 'gcc' failed with exit status 1
    
    bug PRIORITY 
    opened by proycon 1
Releases(v2020.06.08)
Owner
Maarten van Gompel
Research software engineer - NLP - AI - 🐧 Linux & open-source enthusiast - 🐍 Python/ 🌊C/C++ / 🦀 Rust / 🐚 Shell - 🔐 Privacy, Security & Decentralisation
Maarten van Gompel
Code for Fold2Seq paper from ICML 2021

[ICML2021] Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design Environment file: environment.yml Data and Feat

International Business Machines 43 Dec 04, 2022
Multi-task head pose estimation in-the-wild

Multi-task head pose estimation in-the-wild We provide C++ code in order to replicate the head-pose experiments in our paper https://ieeexplore.ieee.o

Roberto Valle 26 Oct 06, 2022
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022
A TensorFlow 2.x implementation of Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders Are Scalable Vision Learners A TensorFlow implementation of Masked Autoencoders Are Scalable Vision Learners [1]. Our implementati

Aritra Roy Gosthipaty 59 Dec 10, 2022
TUPÃ was developed to analyze electric field properties in molecular simulations

TUPÃ: Electric field analyses for molecular simulations What is TUPÃ? TUPÃ (pronounced as tu-pan) is a python algorithm that employs MDAnalysis engine

Marcelo D. Polêto 10 Jul 17, 2022
A custom DeepStack model for detecting 16 human actions.

DeepStack_ActionNET This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API fo

MOSES OLAFENWA 16 Nov 11, 2022
The self-supervised goal reaching benchmark introduced in Discovering and Achieving Goals via World Models

Lexa-Benchmark Codebase for the self-supervised goal reaching benchmark introduced in 'Discovering and Achieving Goals via World Models'. Setup Create

1 Oct 14, 2021
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv This is a PyTorch implementation of our paper. 1. Re

DamoCV 11 Nov 19, 2022
A PyTorch implementation of Learning to learn by gradient descent by gradient descent

Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST

Ilya Kostrikov 300 Dec 11, 2022
Pytorch reimplementation of the Mixer (MLP-Mixer: An all-MLP Architecture for Vision)

MLP-Mixer Pytorch reimplementation of Google's repository for the MLP-Mixer (Not yet updated on the master branch) that was released with the paper ML

Eunkwang Jeon 18 Dec 08, 2022
Statistical-Rethinking-with-Python-and-PyMC3 - Python/PyMC3 port of the examples in " Statistical Rethinking A Bayesian Course with Examples in R and Stan" by Richard McElreath

Statistical Rethinking with Python and PyMC3 This repository has been deprecated in favour of this one, please check that repository for updates, for

Osvaldo Martin 786 Dec 29, 2022
Data cleaning, missing value handle, EDA use in this project

Lending Club Case Study Project Brief Solving this assignment will give you an idea about how real business problems are solved using EDA. In this cas

Dhruvil Sheth 1 Jan 05, 2022
A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks A Transformer-based library for SocialNLP classification tasks. Currently

298 Jan 07, 2023
Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

IAug_CDNet Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. Overview We propose a

53 Dec 02, 2022
PyTorch implementation of spectral graph ConvNets, NIPS’16

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
salabim - discrete event simulation in Python

Object oriented discrete event simulation and animation in Python. Includes process control features, resources, queues, monitors. statistical distrib

181 Dec 21, 2022
Decorators for maximizing memory utilization with PyTorch & CUDA

torch-max-mem This package provides decorators for memory utilization maximization with PyTorch and CUDA by starting with a maximum parameter size and

Max Berrendorf 10 May 02, 2022
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
Very Deep Convolutional Networks for Large-Scale Image Recognition

pytorch-vgg Some scripts to convert the VGG-16 and VGG-19 models [1] from Caffe to PyTorch. The converted models can be used with the PyTorch model zo

Justin Johnson 217 Dec 05, 2022