YouRefIt: Embodied Reference Understanding with Language and Gesture

Overview

YouRefIt: Embodied Reference Understanding with Language and Gesture

YouRefIt: Embodied Reference Understanding with Language and Gesture

by Yixin Chen, Qing Li, Deqian Kong, Yik Lun Kei, Tao Gao, Yixin Zhu, Song-Chun Zhu and Siyuan Huang

The IEEE International Conference on Computer Vision (ICCV), 2021

Introduction

We study the machine's understanding of embodied reference: One agent uses both language and gesture to refer to an object to another agent in a shared physical environment. To tackle this problem, we introduce YouRefIt, a new crowd-sourced, real-world dataset of embodied reference.

For more details, please refer to our paper.

Checklist

  • Image ERU
  • Video ERU

Installation

The code was tested with the following environment: Ubuntu 18.04/20.04, python 3.7/3.8, pytorch 1.9.1. Run

    git clone https://github.com/yixchen/YouRefIt_ERU
    pip install -r requirements.txt

Dataset

Download the YouRefIt dataset from Dataset Request Page and put under ./ln_data

Model weights

  • Yolov3: download the pretrained model and place the file in ./saved_models by
    sh saved_models/yolov3_weights.sh
    
  • More pretrained models are availble Google drive, and should also be placed in ./saved_models.

Make sure to put the files in the following structure:

|-- ROOT
|	|-- ln_data
|		|-- yourefit
|			|-- images
|			|-- paf
|			|-- saliency
|	|-- saved_modeks
|		|-- final_model_full.tar
|		|-- final_resc.tar

Training

Train the model, run the code under main folder.

python train.py --data_root ./ln_data/ --dataset yourefit --gpu gpu_id 

Evaluation

Evaluate the model, run the code under main folder. Using flag --test to access test mode.

python train.py --data_root ./ln_data/ --dataset yourefit --gpu gpu_id \
 --resume saved_models/model.pth.tar \
 --test

Evaluate Image ERU on our released model

Evaluate our full model with PAF and saliency feature, run

python train.py --data_root ./ln_data/ --dataset yourefit  --gpu gpu_id \
 --resume saved_models/final_model_full.tar --use_paf --use_sal --large --test

Evaluate baseline model that only takes images as input, run

python train.py --data_root ./ln_data/ --dataset yourefit  --gpu gpu_id \
 --resume saved_models/final_resc.tar --large --test

Evalute the inference results on test set on different IOU levels by changing the path accordingly,

 python evaluate_results.py

Citation

@inProceedings{chen2021yourefit,
 title={YouRefIt: Embodied Reference Understanding with Language and Gesture},
 author = {Chen, Yixin and Li, Qing and Kong, Deqian and Kei, Yik Lun and Zhu, Song-Chun and Gao, Tao and Zhu, Yixin and Huang, Siyuan},
 booktitle={The IEEE International Conference on Computer Vision (ICCV),
 year={2021}
 }    

Acknowledgement

Our code is built on ReSC and we thank the authors for their hard work.

Code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms.

RDC-SLAM This repository contains code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms. The system takes in

40 Nov 19, 2022
A Simple Long-Tailed Rocognition Baseline via Vision-Language Model

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

Teli Ma 4 Jan 20, 2022
Best Practices on Recommendation Systems

Recommenders What's New (February 4, 2021) We have a new relase Recommenders 2021.2! It comes with lots of bug fixes, optimizations and 3 new algorith

Microsoft 14.8k Jan 03, 2023
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

Aiyu Cui 277 Dec 28, 2022
Composable transformations of Python+NumPy programsComposable transformations of Python+NumPy programs

Chex Chex is a library of utilities for helping to write reliable JAX code. This includes utils to help: Instrument your code (e.g. assertions) Debug

DeepMind 506 Jan 08, 2023
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

Phil Wang 146 Dec 06, 2022
Pre-Trained Image Processing Transformer (IPT)

Pre-Trained Image Processing Transformer (IPT) By Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Cha

HUAWEI Noah's Ark Lab 332 Dec 18, 2022
[AAAI 2021] EMLight: Lighting Estimation via Spherical Distribution Approximation and [ICCV 2021] Sparse Needlets for Lighting Estimation with Spherical Transport Loss

EMLight: Lighting Estimation via Spherical Distribution Approximation (AAAI 2021) Update 12/2021: We release our Virtual Object Relighting (VOR) Datas

Fangneng Zhan 144 Jan 06, 2023
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023
Model Serving Made Easy

The easiest way to build Machine Learning APIs BentoML makes moving trained ML models to production easy: Package models trained with any ML framework

BentoML 4.4k Jan 08, 2023
StrongSORT: Make DeepSORT Great Again

StrongSORT StrongSORT: Make DeepSORT Great Again StrongSORT: Make DeepSORT Great Again Yunhao Du, Yang Song, Bo Yang, Yanyun Zhao arxiv 2202.13514 Abs

369 Jan 04, 2023
Code for Active Learning at The ImageNet Scale.

Code for Active Learning at The ImageNet Scale. This repository implements many popular active learning algorithms and allows training with torch's DDP.

Zeyad Emam 47 Dec 12, 2022
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen

When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?

Shen Lab at Texas A&M University 106 Nov 11, 2022
NEO: Non Equilibrium Sampling on the orbit of a deterministic transform

NEO: Non Equilibrium Sampling on the orbit of a deterministic transform Description of the code This repo describes the NEO estimator described in the

0 Dec 01, 2021
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Sungha Choi 173 Dec 21, 2022
Moment-DETR code and QVHighlights dataset

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
SBINN: Systems-biology informed neural network

SBINN: Systems-biology informed neural network The source code for the paper M. Daneker, Z. Zhang, G. E. Karniadakis, & L. Lu. Systems biology: Identi

Lu Group 15 Nov 19, 2022
Dados coletados e programas desenvolvidos no processo de iniciação científica

Iniciacao_cientifica_FAPESP_2020-14845-6 Dados coletados e programas desenvolvidos no processo de iniciação científica Os arquivos .py são os programa

1 Jan 10, 2022
Stochastic gradient descent with model building

Stochastic Model Building (SMB) This repository includes a new fast and robust stochastic optimization algorithm for training deep learning models. Th

S. Ilker Birbil 22 Jan 19, 2022