Text Generation by Learning from Demonstrations

Overview

Text Generation by Learning from Demonstrations

The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?).

Paper

arXiv

Prerequisites

Per fairseq usage, we need to install this particular modifed version fairseq. The simplest way: pip install --editable ./.

Due to pytorch changes, and given that we're using a slightly older version of fairseq (see below), please use pytorch version <= 1.6.0. However, the GOLD algorithm can be easily implemented on top of the latest fairseq (or most text generation codebases).

Datasets

For downloading CNN/DM and XSum datasets, we follow the instructions here; note that this link does not correspond to the latest fairseq. Our version of the CNN/DM input articles include the prepended "(CNN)" tags. For downloading IWSLT14 De-En dataset, we follow the instructions here. The binary files are provided in our repo, in the directory data-bin. For downloading the particular version of our NQG dataset, we follow the instructions here. The binary files are provided upon request.

Code: experiments on transformer models using fairseq

For reproducibility, the code is based on a April 2020 version of fairseq (based on release v0.9.0). However, it is easy to reimplement the GOLD algorithm in the latest version of fairseq and in another frameworks.

How to implement in the latest version of fairseq?

  • If your GPUs "have large memory", then most of the implementation happens around the criterion code (for question generation, summarization, translation, the py file is ./fairseq/criterions/label_smoothed_cross_entropy.py in the April 2020 version of fairseq). Note that the implementation in this repo uses this approach.
    • "Have large memory": Meaning the GPUs can store pi, pi-tilde, p_MLE at the same time; see Algorithm 1 in the paper. In our experiments (using the same datasets, same batch size, etc.), this would imply that the GPUs have ~24G of memory.
  • If your GPUs cannot fit the above models, then you may need to input p_MLE probabilities as features. This can be done by first saving the probabilities into a text file or pickle file, and then loading them in the load_langpair_dataset function of ./fairseq/tasks/translation.py (or other corresponding files for other tasks).

How to implement in other codebase?

  • See Algorithm 1 in the paper. The majority of the work will happen around the loss computation. We need to have three different models ready when computing losses: (1) pi, the network we're training; (2) pi-tilde, a slightly older version of pi (created to ensure training stability, similar to the periodic synchronization in deep Q-learning; (3) p_MLE, to compute rewards (but this can be pre-loaded in the form of input features, in case the GPU cannot fit the third model).

BART summarization generation fairseq issue

Given that there has been minor bugs with the fairseq BART summarization code (details on original fairseq github), we make the corresponding changes according to the fairseq authors' recommendation. (1) In ./fairseq/sequence_generator.py, see the modification here. (2) In ./fairseq/tasks/fairseq_task.py, see the modification here. (3) In ./fairseq/models/bart/hub_interface.py, see the modification here. The above is already implemented in this repo. But if we're reimplementing the GOLD code in the latest fairseq, we need to beware of this issue (and keep the three modifications in mind).

How to run?

Training

The entry point for training is ./fairseq_cli/train.py. See ./fairseq/options.py for possible flags. For CNN/DM, the script for running GOLD-p is provided in run_cnndm_goldp.sh; the script for running GOLD-s (which often performs better than GOLD-p) is provided in run_cnndm_golds.sh. Some other scripts for other tasks are also provided. For explanations of flags, please refer to ./fairseq/options.py as well as Algorithm 1 in the paper.

Validation

Note that to validate, one possibility is to find the checkpoint that corresponds to highest BLEU/ROUGE-2 score on dev set. We cannot validate according to NLL loss, given that in the paper, we showed that our models achieve higher accuracy but higher perplexity (and NLL loss). Do not use checkpoint_best.pt. IWSLT14 De-En validation is implemented. For summarization, please use run_cnndm_validation.py (similar to run_cnndm_inference.py) as an example to loop through all checkpoints. Then, compute the ROUGE based on run_cnndm_validation_step2.sh (perhaps with small modifications).

Evaluation/inference

For BART evaluation, we use the inference scripts provided in run_cnndm_inference.sh, run_xsum_inference.sh, run_squad_inference.sh. For IWSLT14 De-En inference, the following few lines will do.

python -W ignore [path-to-fairseq_cli/generate.py] data-bin/iwslt14.tokenized.de-en \
    --path [path-to-model-checkpoint.pt] \
    --batch-size 128 --beam 5 --remove-bpe --gen-subset test  > [path-to-save-to-file]

Transformer models

Please ensure the data is processed appropriately before using the models.

MLE model checkpoints

GOLD-s model checkpoints

Not a lot of hyperparameter search was done for the transformer models, so it is likely that more search (on hyperparameters, on architecture) could reach better performance.

Moreover, for summarization models, we use pyrouge+files2rouge to evaluate, based on the fairseq instructions after pyrouge+files2rouge installation. The package files2rouge has a common WordNet-2.0.exc.db error; see this link for the fix.

Citation, authors, and contact

The bibtex entry

Richard Yuanzhe Pang

He He

Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022
A simple implementation of Kalman filter in Multi Object Tracking

kalman Filter in Multi-object Tracking A simple implementation of Kalman filter in Multi Object Tracking 本实现是在https://github.com/liuchangji/kalman-fil

124 Dec 29, 2022
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022
CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation

CyTran: Cycle-Consistent Transformers for Non-Contrast to Contrast CT Translation We propose a novel approach to translate unpaired contrast computed

Nicolae Catalin Ristea 13 Jan 02, 2023
Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Codebase for "INVASE: Instance-wise Variable Selection" Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar Paper: Jinsung Yoon, James Jordon,

Jinsung Yoon 50 Nov 11, 2022
This is the pytorch implementation of the paper - Axiomatic Attribution for Deep Networks.

Integrated Gradients This is the pytorch implementation of "Axiomatic Attribution for Deep Networks". The original tensorflow version could be found h

Tianhong Dai 150 Dec 23, 2022
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
Video Frame Interpolation without Temporal Priors (a general method for blurry video interpolation)

Video Frame Interpolation without Temporal Priors (NeurIPS2020) [Paper] [video] How to run Prerequisites NVIDIA GPU + CUDA 9.0 + CuDNN 7.6.5 Pytorch 1

YoujianZhang 31 Sep 04, 2022
Fast and Context-Aware Framework for Space-Time Video Super-Resolution (VCIP 2021)

Fast and Context-Aware Framework for Space-Time Video Super-Resolution Preparation Dependencies PyTorch 1.2.0 CUDA 10.0 DCNv2 cd model/DCNv2 bash make

Xueheng Zhang 1 Mar 29, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Varun Nair 37 Dec 30, 2022
Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2

Graph Transformer - Pytorch Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2. This was recently used by bot

Phil Wang 97 Dec 28, 2022
Negative Interactions for Improved Collaborative Filtering:

Negative Interactions for Improved Collaborative Filtering: Don’t go Deeper, go Higher This notebook provides an implementation in Python 3 of the alg

Harald Steck 21 Mar 05, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning This is a small repo illustrating how to use WebDataset on ImageNet. usi

50 Dec 16, 2022
Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation

Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation (AAAI 2021) Official pytorch implementation of our paper: Discriminative

Beom 74 Dec 27, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify th

NelakurthiSudheer 2 Jan 03, 2022
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Meta Archive 873 Dec 15, 2022
2nd solution of ICDAR 2021 Competition on Scientific Literature Parsing, Task B.

TableMASTER-mmocr Contents About The Project Method Description Dependency Getting Started Prerequisites Installation Usage Data preprocess Train Infe

Jianquan Ye 298 Dec 21, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs at the moment, Cycles and Arnold supported

GafferHaven Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs are supported at the moment, in Cycles and Arnold lights.

Jakub Vondra 6 Jan 26, 2022