This is the repo for the paper "Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement".

Overview

Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement

This is the repository for the paper "Improving the Accuracy-Memory Trade-Off of Random Forests Via Leaf-Refinement". The repository is structured as the following:

  • PyPruning: This repository contains the implementations for all pruning algorithms and can be installed as a regular python package and used in other projects. For more information have a look at the Readme file in PyPruning/Readme.md and its documentation in PyPruning/docs.
  • experiment_runner: This is a simple package / script which can be used to run multiple experiments in parallel on the same machine or distributed across many different machines. It can also be installed as a regular python package and used for other projects. For more information have a look at the Readme file in experiment_runner/Readme.md.
  • {adult, bank, connect, ..., wine-quality}: Each folder contains an script init.sh which downloads the necessary files and performs pre-processing if necessary (e.g. extract archives etc.).
  • init_all.sh: Iterates over all datasets and calls the respective init.sh files. Depending on your internet connection this may take some time
  • environment.yml: Anaconda environment file which contains all dependencies. For more details see below
  • LeafRefinement.py: This is the implementation of the LeafRefinement method. We initially implemented a more complex method which uses Proximal Gradient Descent to simultaneously learn the weights and refine leaf nodes. During our experiments we discovered that leaf-refinement in iteself was enough and much simpler. We kept our old code, but implemented the LeafRefinement.py class for easier usage.
  • run.py: The script which executes the experiments. For more details see the examples below.
  • plot_results.py: The script is used explore and display results. It also creates the plots for the paper.

Getting everything ready

This git repository contains two submodules PyPruning and experiment_runner which need to be cloned first.

git clone --recurse-submodules [email protected]:sbuschjaeger/leaf-refinement-experiments.git

After the code has been obtained you need to install all dependencies. If you use Anaconda you can simply call

conda env create -f environment.yml

to prepare and activate the environment LR. After that you can install the python packages PyPruning and experiment_runner via pip:

pip install -e file:PyPruning
pip install -e file:experiment_runner

and finally activate the environment with

conda activate LR

Last you will need to get some data. If you are interested in a specific dataset you can use the accompanying init.sh script via

cd `${Dataset}`
./init.sh

or if you want to download all datasets use

./init_all.sh

Depending on your internet connection this may take some time.

Running experiments

If everything worked as expected you should now be able to run the run.py script to prune some ensembles. This script has a decent amount of parameters. See further below for an minimal working example.

  • n_jobs: Number of jobs / threads used for multiprocessing
  • base: Base learner used for experiments. Can be {RandomForestClassifier, ExtraTreesClassifier, BaggingClassifier, HeterogenousForest}. Can be a list of arguments for multiple experiments.
  • nl: Maximum number of leaf nodes (corresponds to scikit-learns max_leaf_nodes parameter)
  • dataset: Dataset used for experiment. Can be a list of arguments for multiple experiments.
  • n_estimators: Number of estimators trained for the base learner.
  • n_prune: Size of the pruned ensemble. Can be a list of arguments for multiple experiments.
  • xval: Number of cross validation runs (default is 5)
  • use_prune: If set then the script uses a train / prune / test split. If not set then the training data is also used for pruning.
  • timeout: Maximum number of seconds per run. If the runtime exceeds the provided value, stop execution (default is 5400 seconds)

Note that all base ensembles for all cross validation splits of a dataset are trained before any of the pruning algorithms are used. If you want to evaluate many datasets / hyperparameter configuration in one run this requires a lot of memory.

To train and prune forests on the magic dataset you can for example do

./run.py --dataset adult -n_estimators 256 --n_prune 2 4 8 16 32 64 128 256 --nl 64 128 256 512 1024 --n_jobs 128 --xval 5 --base RandomForestClassifier

The results are stored in ${Dataset}/results/${base}/${use_prune}/${date}/results.jsonl where ${Dataset} is the dataset (e.g. magic) and ${date} is the current time and date.

In order to re-produce the experiments form the paper you can call:

./run.py --dataset adult anura bank chess connect eeg elec postures japanese-vowels magic mozilla mnist nomao avila ida2016 satimage --n_estimators 256 --n_prune 2 4 8 16 32 64 128 256 --nl 64 128 256 512 1024 --n_jobs 128 --xval 5 --base RandomForestClassifier

Important: This call uses 128 threads and requires a decent (something in the range of 64GB) amount of memory to work.

Exploring the results

After you run the experiments you can view the results with the plot_results.py script. We recommend to use an interactive Python environment for that such as Jupyter or VSCode with the ability to execute cells, but you should also be able to run this script as-is. This script is fairly well-commented, so please have a look at it for more detailed comments.

Robust Partial Matching for Person Search in the Wild

APNet for Person Search Introduction This is the code of Robust Partial Matching for Person Search in the Wild accepted in CVPR2020. The Align-to-Part

Yingji Zhong 36 Dec 18, 2022
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023
Chainer implementation of recent GAN variants

Chainer-GAN-lib This repository collects chainer implementation of state-of-the-art GAN algorithms. These codes are evaluated with the inception score

399 Oct 23, 2022
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022
ncnn is a high-performance neural network inference framework optimized for the mobile platform

ncnn ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployme

Tencent 16.2k Jan 05, 2023
Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Geometry-aware Instance-reweighted Adversarial Training This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (ht

Jingfeng 47 Dec 22, 2022
Benchmark library for high-dimensional HPO of black-box models based on Weighted Lasso regression

LassoBench LassoBench is a library for high-dimensional hyperparameter optimization benchmarks based on Weighted Lasso regression. Note: LassoBench is

Kenan Šehić 5 Mar 15, 2022
Saeed Lotfi 28 Dec 12, 2022
Unsupervised Image to Image Translation with Generative Adversarial Networks

Unsupervised Image to Image Translation with Generative Adversarial Networks Paper: Unsupervised Image to Image Translation with Generative Adversaria

Hao 71 Oct 30, 2022
Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021) An efficient PyTorch library for Point Cloud Completion.

Microsoft 119 Jan 02, 2023
Joint project of the duo Hacker Ninjas

Project Smoothie Společný projekt dua Hacker Ninjas. První pokus o hříčku po třech týdnech učení se programování. Jakub Kolář e:\

Jakub Kolář 2 Jan 07, 2022
Physics-Informed Neural Networks (PINN) and Deep BSDE Solvers of Differential Equations for Scientific Machine Learning (SciML) accelerated simulation

NeuralPDE NeuralPDE.jl is a solver package which consists of neural network solvers for partial differential equations using scientific machine learni

SciML Open Source Scientific Machine Learning 680 Jan 02, 2023
ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN

ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN CVPR 2020 (Oral); Pose and Appearance Attributes Transfer;

Men Yifang 400 Dec 29, 2022
Source code of AAAI 2022 paper "Towards End-to-End Image Compression and Analysis with Transformers".

Towards End-to-End Image Compression and Analysis with Transformers Source code of our AAAI 2022 paper "Towards End-to-End Image Compression and Analy

37 Dec 21, 2022
Finetune SSL models for MOS prediction

Finetune SSL models for MOS prediction This is code for our paper under review for ICASSP 2022: "Generalization Ability of MOS Prediction Networks" Er

Yamagishi and Echizen Laboratories, National Institute of Informatics 32 Nov 22, 2022
A Quick and Dirty Progressive Neural Network written in TensorFlow.

prog_nn .▄▄ · ▄· ▄▌ ▐ ▄ ▄▄▄· ▐ ▄ ▐█ ▀. ▐█▪██▌•█▌▐█▐█ ▄█▪ •█▌▐█ ▄▀▀▀█▄▐█▌▐█▪▐█▐▐▌ ██▀

SynPon 53 Dec 12, 2022
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe.

DeepLab Introduction DeepLab is a state-of-art deep learning system for semantic image segmentation built on top of Caffe. It combines densely-compute

Ali 234 Nov 14, 2022
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
Learning Modified Indicator Functions for Surface Reconstruction

Learning Modified Indicator Functions for Surface Reconstruction In this work, we propose a learning-based approach for implicit surface reconstructio

4 Apr 18, 2022