This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking".

Overview

SCT

This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking"

The spatial-channel Transformer (SCT) enhancer is a task-inspired low-light enhancer toward facilitating nighttime UAV tracking. Evaluations on the public UAVDark135 and the newly constructed DarkTrack2021 benchmarks demonstrate that the performance gains of SCT brought to nighttime UAV tracking surpass general low-light enhancers.

SCT has been submitted to RA-L with ICRA option.

Environment Preparing

python 3.6
pytorch 1.8.1

Testing

Run lowlight_test.py, the results will be saved in ./result/

cd SCT
python lowlight_test.py 

Training

Before training, you need to prepare the training set of the LOL dataset. Run lowlight_train.py. The model will be saved in ./log/SCT/models

cd SCT
python lowlight_train.py --trainset_path /your/path/to/LOLdataset/

SCT for Nighttime UAV Tracking

To evaluate the performance of SCT in facilitating trackers' nighttime tracking ability, you need to meet the enviroment requirements of base trackers and download their snapshots to corresponding folders at first. Details can be found in their repos. Currently supporting trackers including HiFT, SiamAPN++, SiamRPN++, DiMP18, DiMP50, and PrDiMP50.

For HiFT, SiamAPN++, and SiamRPN++, change directory to their corresponding root, and simply run trackers with “--enhance” option

cd HiFT/SiamAPN++/pysot
python tools/test.py --dataset DarkTrack --enhance

For DiMP18, DiMP50, and PrDiMP50, customized your local paths in pytracking/evaluation/local.py

cd pytracking 
python run_tracker.py --tracker_name dimp --tracker_param dimp18/dimp50/prdimp50 --enhance 

DarkTrack2021 Benchmark

The DarkTrack2021 benchmark comprises 110 challenging sequences with 100K frames in total. All sequences are captured at nighttime in urban scenes with a frame-rate of 30 frames/s (FPS). Some first frames of selected sequences in DarkTrack2021 are displayed below.

first frames

DarkTrack2021 is now available here (password: a4lq).

Demo Video

Demo of SCT

Contact

Junjie Ye Email: [email protected]

Changhong Fu Email: [email protected]

Acknowledgements

A great thanks to Swin-Transformer for providing the basis for this code.

Owner
Intelligent Vision for Robotics in Complex Environment
Adaptive Vision for Robotics in Complex Environment
Intelligent Vision for Robotics in Complex Environment
Google AI Open Images - Object Detection Track: Open Solution

Google AI Open Images - Object Detection Track: Open Solution This is an open solution to the Google AI Open Images - Object Detection Track 😃 More c

minerva.ml 46 Jun 22, 2022
Collect super-resolution related papers, data, repositories

Collect super-resolution related papers, data, repositories

WangChaofeng 1.7k Jan 03, 2023
Implementation of Barlow Twins paper

barlowtwins PyTorch Implementation of Barlow Twins paper: Barlow Twins: Self-Supervised Learning via Redundancy Reduction This is currently a work in

IgorSusmelj 86 Dec 20, 2022
ReGAN: Sequence GAN using RE[INFORCE|LAX|BAR] based PG estimators

Sequence Generation with GANs trained by Gradient Estimation Requirements: PyTorch v0.3 Python 3.6 CUDA 9.1 (For GPU) Origin The idea is from paper Se

40 Nov 03, 2022
基于tensorflow 2.x的图片识别工具集

Classification.tf2 基于tensorflow 2.x的图片识别工具集 功能 粗粒度场景图片分类 细粒度场景图片分类 其他场景图片分类 模型部署 tensorflow serving本地推理和docker部署 tensorRT onnx ... 数据集 https://hyper.a

Wei Qi 1 Nov 03, 2021
Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable.

Diffrax Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable. Diffrax is a JAX-based library providing numerical differe

Patrick Kidger 717 Jan 09, 2023
Hypernetwork-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels

Hypernet-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels The implementation of Hypernet-Ensemble Le

Sungmin Hong 6 Jul 18, 2022
Recreate CenternetV2 based on MMDET.

Introduction This project is trying to Recreate CenternetV2 based on MMDET, which is proposed in paper Probabilistic two-stage detection. This project

25 Dec 09, 2022
Experiments with Fourier layers on simulation data.

Factorized Fourier Neural Operators This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fo

Alasdair Tran 57 Dec 25, 2022
ConformalLayers: A non-linear sequential neural network with associative layers

ConformalLayers: A non-linear sequential neural network with associative layers ConformalLayers is a conformal embedding of sequential layers of Convo

Prograf-UFF 5 Sep 28, 2022
Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

causal-bald | Abstract | Installation | Example | Citation | Reproducing Results DUE An implementation of the methods presented in Causal-BALD: Deep B

OATML 13 Oct 07, 2022
Code for "Continuous-Time Meta-Learning with Forward Mode Differentiation" (ICLR 2022)

Continuous-Time Meta-Learning with Forward Mode Differentiation ICLR 2022 (Spotlight) - Installation - Example - Citation This repository contains the

Tristan Deleu 25 Oct 20, 2022
Python library for computer vision labeling tasks. The core functionality is to translate bounding box annotations between different formats-for example, from coco to yolo.

PyLabel pip install pylabel PyLabel is a Python package to help you prepare image datasets for computer vision models including PyTorch and YOLOv5. I

PyLabel Project 176 Jan 01, 2023
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
Code of our paper "Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning"

CCOP Code of our paper Contrastive Object-level Pre-training with Spatial Noise Curriculum Learning Requirement Install OpenSelfSup Install Detectron2

Chenhongyi Yang 21 Dec 13, 2022
Weakly Supervised Segmentation with Tensorflow. Implements instance segmentation as described in Simple Does It: Weakly Supervised Instance and Semantic Segmentation, by Khoreva et al. (CVPR 2017).

Weakly Supervised Segmentation with TensorFlow This repo contains a TensorFlow implementation of weakly supervised instance segmentation as described

Phil Ferriere 220 Dec 13, 2022
Warning: This project does not have any current developer. See bellow.

Pylearn2: A machine learning research library Warning : This project does not have any current developer. We will continue to review pull requests and

Laboratoire d’Informatique des Systèmes Adaptatifs 2.7k Dec 26, 2022
Create animations for the optimization trajectory of neural nets

Animating the Optimization Trajectory of Neural Nets loss-landscape-anim lets you create animated optimization path in a 2D slice of the loss landscap

Logan Yang 81 Dec 25, 2022
U-Net for GBM

My Final Year Project(FYP) In National University of Singapore(NUS) You need Pytorch(stable 1.9.1) Both cuda version and cpu version are OK File Str

PinkR1ver 1 Oct 27, 2021
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023