B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

Related tags

Deep LearningBBEA
Overview

B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

This is the offical implementation of the aforementioned paper. Graphical Abstract


Abstract

The early pioneering Neural Architecture Search (NAS) works were multi-trial methods applicable to any general search space. The subsequent works took advantage of the early findings and developed weight-sharing methods that assume a structured search space typically with pre-fixed hyperparameters. Despite the amazing computational efficiency of the weight-sharing NAS algorithms, it is becoming apparent that multi-trial NAS algorithms are also needed for identifying very high-performance architectures, especially when exploring a general search space. In this work, we carefully review the latest multi-trial NAS algorithms and identify the key strategies including Evolutionary Algorithm (EA), Bayesian Optimization (BO), diversification, input and output transformations, and lower fidelity estimation. To accommodate the key strategies into a single framework, we develop B2EA that is a surrogate assisted EA with two BO surrogate models and a mutation step in between. To show that B2EA is robust and efficient, we evaluate three performance metrics over 14 benchmarks with general and cell-based search spaces. Comparisons with state-of-the-art multi-trial algorithms reveal that B2EA is robust and efficient over the 14 benchmarks for three difficulty levels of target performance.

Citation

To be updated soon


Requirements

Prerequisite

This project is developed and tested on Linux OS. If you want to run on Windows, we strongly suggest using Linux Subsystem for Windows. To avoid conflicting dependencies, we recommend to create a new virtual enviornment. For this reason, installing Anaconda suitable to the OS system is pre-required to create the virtual environment.

Package Installation

The following is creating an environment and also installing requried packages automatically using conda.

(base) device:path/BBEA$ conda create -n bbea python=3.6
(base) device:path/BBEA$ conda activate bbea
(bbea) device:path/BBEA$ sh install.sh

Tabular Dataset Installation

Pre-evaluated datasets enable to benchmark Hyper-Parameter Optimization(HPO) algorithm performance without hugh computational costs of DNN training.

HPO Benchmark

  • To run algorithms on the HPO-bench dataset, download the database files as follows:
(bbea) device:path/BBEA$ cd lookup
(bbea) device:path/BBEA/lookup$ wget http://ml4aad.org/wp-content/uploads/2019/01/fcnet_tabular_benchmarks.tar.gz
(bbea) device:path/BBEA/lookup$ tar xf fcnet_tabular_benchmarks.tar.gz

Note that *.hdf5 files should be located under /lookup/fcnet_tabular_benchmarks.

Two NAS Benchmarks

  • To run algorithms on the the NAS-bench-101 dataset,
    • download the tfrecord file and save it into /lookup.
    • NAS-bench-101 API requires to install the CPU version of TensorFlow 1.12.
(bbea)device:path/BBEA/lookup$ wget https://storage.googleapis.com/nasbench/nasbench_full.tfrecord

  • To run algorithms on the NAS-bench-201,
    • download NAS-Bench-201-v1_1-096897.pth file in the /lookup according to this doc.
    • NAS-bench-201 API requires to install pytorch CPU version. Refer to pytorch installation guide.
(bbea)device:path/BBEA$ conda install pytorch torchvision cpuonly -c pytorch

DNN Benchmark

  • To run algorithms on the DNN benchmark, download the zip file from the link.
    • Vaildate the file contains CSV files and JSON files in /lookup and /hp_conf, respectively.
    • Unzip the downloaded file and copy two directories into this project. Note the folders already exists in this project.

HPO Run

To run the B2EA algorithms

The experiment using the proposed method of the paper can be performed using the following runner:

  • bbea_runner.py
    • This runner can conduct the experiment that the input arguments have configured.
    • Specifically, the hyperparameter space configuration and the maximum runtime are two mandatory arguments. In the default setting, the names of the search spaces configurations denote the names of JSON configuration files in /hp_conf. The runtime, on the other hand, can be set using seconds. For convenience, 'm', 'h', 'd' can be postfixed to denote minutes, hours, and days.
    • Further detailed options such that the algorithm hyperparameters' setting and the run configuration such as repeated runs are optional.
    • Refer to the help (-h) option as the command line argument.
usage: bbea_runner.py [-h] [-dm] [-bm BENCHMARK_MODE] [-nt NUM_TRIALS]
                      [-etr EARLY_TERM_RULE] [-hd HP_CONFIG_DIR]
                      hp_config exp_time

positional arguments:
  hp_config             Hyperparameter space configuration file name.
  exp_time              The maximum runtime when an HPO run expires.

optional arguments:
  -h, --help            show this help message and exit
  -dm, --debug_mode     Set debugging mode.
  -nt NUM_TRIALS, --num_trials NUM_TRIALS
                        The total number of repeated runs. The default setting
                        is "1".
  -etr EARLY_TERM_RULE, --early_term_rule EARLY_TERM_RULE
                        Early termination rule. A name of compound rule, such
                        as "PentaTercet" or "DecaTercet", can be used. The
                        default setting is DecaTercet.
  -hd HP_CONFIG_DIR, --hp_config_dir HP_CONFIG_DIR
                        Hyperparameter space configuration directory. The
                        default setting is "./hp_conf/"


Results

Experimental results will be saved as JSON files under the /results directory. While the JSON file is human-readable and easily interpretable, we further provide utility functions in the python scripts of the above directory, which can analyze the results and plot the figures shown in the paper.

Owner
SNU ADSL
Applied Data Science Lab., Seoul National University
SNU ADSL
Multi-Task Deep Neural Networks for Natural Language Understanding

New Release We released Adversarial training for both LM pre-training/finetuning and f-divergence. Large-scale Adversarial training for LMs: ALUM code

Xiaodong 2.1k Dec 30, 2022
PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022
Code repository for "Free View Synthesis", ECCV 2020.

Free View Synthesis Code repository for "Free View Synthesis", ECCV 2020. Setup Install the following Python packages in your Python environment - num

Intelligent Systems Lab Org 253 Dec 07, 2022
CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework

CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework This repository contains a framework for Recommender Systems (RecSys), a

RecSys Lab 8 Jul 03, 2022
This repository gives an example on how to preprocess the data of the HECKTOR challenge

HECKTOR 2021 challenge This repository gives an example on how to preprocess the data of the HECKTOR challenge. Any other preprocessing is welcomed an

56 Dec 01, 2022
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
Official Implementation of Few-shot Visual Relationship Co-localization

VRC Official implementation of the Few-shot Visual Relationship Co-localization (ICCV 2021) paper project page | paper Requirements Use python = 3.8.

22 Oct 13, 2022
PINN Burgers - 1D Burgers equation simulated by PINN

PINN(s): Physics-Informed Neural Network(s) for Burgers equation This is an impl

ShotaDEGUCHI 1 Feb 12, 2022
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model a

Google 3.2k Dec 31, 2022
Franka Emika Panda manipulator kinematics&dynamics simulation

pybullet_sim_panda Pybullet simulation environment for Franka Emika Panda Dependency pybullet, numpy, spatial_math_mini Simple example (please check s

0 Jan 20, 2022
Mememoji - A facial expression classification system that recognizes 6 basic emotions: happy, sad, surprise, fear, anger and neutral.

a project built with deep convolutional neural network and ❤️ Table of Contents Motivation The Database The Model 3.1 Input Layer 3.2 Convolutional La

Jostine Ho 761 Dec 05, 2022
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022
Intro-to-dl - Resources for "Introduction to Deep Learning" course.

Introduction to Deep Learning course resources https://www.coursera.org/learn/intro-to-deep-learning Running on Google Colab (tested for all weeks) Go

Advanced Machine Learning specialisation by HSE 761 Dec 24, 2022
Extracting knowledge graphs from language models as a diagnostic benchmark of model performance.

Interpreting Language Models Through Knowledge Graph Extraction Idea: How do we interpret what a language model learns at various stages of training?

EPFL Machine Learning and Optimization Laboratory 9 Oct 25, 2022
Repository for the "Gotta Go Fast When Generating Data with Score-Based Models" paper

Gotta Go Fast When Generating Data with Score-Based Models This repo contains the official implementation for the paper Gotta Go Fast When Generating

Alexia Jolicoeur-Martineau 89 Nov 09, 2022
[ICCV 2021] Official PyTorch implementation for Deep Relational Metric Learning.

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

Borui Zhang 39 Dec 10, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 04, 2023
DeepOBS: A Deep Learning Optimizer Benchmark Suite

DeepOBS - A Deep Learning Optimizer Benchmark Suite DeepOBS is a benchmarking suite that drastically simplifies, automates and improves the evaluation

Aaron Bahde 7 May 12, 2020
Tesla Light Show xLights Guide With python

Tesla Light Show xLights Guide Welcome to the Tesla Light Show xLights guide! You can create and run your own light shows on Tesla vehicles. Running a

Tesla, Inc. 2.5k Dec 29, 2022
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022