Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Related tags

Deep LearningStemGNN
Overview

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting

This repository is the official implementation of Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting.

Requirements

Recommended version of OS & Python:

To install python dependencies, virtualenv is recommended, sudo apt install python3.7-venv to install virtualenv for python3.7. All the python dependencies are verified for pip==20.1.1 and setuptools==41.2.0. Run the following commands to create a venv and install python dependencies:

python3.7 -m venv venv
source venv/bin/activate
pip install --upgrade pip
pip install -r requirements.txt

Datasets

PEMS03, PEMS04, PEMS07, PEMS08, METR-LA, PEMS-BAY, Solar, Electricity, ECG5000, COVID-19

We can get the raw data through the links above. We evaluate the performance of traffic flow forecasting on PEMS03, PEMS07, PEMS08 and traffic speed forecasting on PEMS04, PEMS-BAY and METR-LA. So we use the traffic flow table of PEMS03, PEMS07, PEMS08 and the traffic speed table of PEMS04, PEMS-BAY and METR-LA as our datasets. We download the solar power data of Alabama (Eastern States) and merge the 5-minute csv files (totally 137 time series) as our Solar dataset. We delete the header and index of Electricity file downloaded from the link above as our Electricity dataset. For COVID-19 dataset, the raw data is under the folder csse_covid_19_data/csse_covid_19_time_series/ of the above github link. We use time_series_covid19_confirmed_global.csv to calculate the daily number of newly confirmed infected people from 1/22/2020 to 5/10/2020. The 25 countries we take into consideration are 'US','Canada','Mexico','Russia','UK','Italy','Germany','France','Belarus ','Brazil','Peru','Ecuador','Chile','India','Turkey','Saudi Arabia','Pakistan','Iran','Singapore','Qatar','Bangladesh','Arab','China','Japan','Korea'.

The input csv file should contain no header and its shape should be T*N, where T denotes total number of timestamps, N denotes number of nodes.

Since complex data cleansing is needed on the above datasets provided in the urls before fed into the StemGNN model, we provide a cleaned version of ECG5000 (./dataset/ECG_data.csv) for reproduction convenience. The ECG_data.csv is in shape of 5000*140, where 5000 denotes number of timestamps and 140 denotes total number of nodes. Run command python main.py to trigger training and evaluation on ECG_data.csv.

Training and Evaluation

The training procedure and evaluation procedure are all included in the main.py. To train and evaluate on some dataset, run the following command:

python main.py --train True --evaluate True --dataset <name of csv file> --output_dir <path to output directory> --n_route <number of nodes> --window_size <length of sliding window> --horizon <predict horizon> --norm_method z_score --train_length 7 --validate_length 2 --test_length 1

The detailed descriptions about the parameters are as following:

Parameter name Description of parameter
train whether to enable training, default True
evaluate whether to enable evaluation, default True
dataset file name of input csv
window_size length of sliding window, default 12
horizon predict horizon, default 3
train_length length of training data, default 7
validate_length length of validation data, default 2
test_length length of testing data, default 1
epoch epoch size during training
lr learning rate
multi_layer hyper parameter of STemGNN which controls the parameter number of hidden layers, default 5
device device that the code works on, 'cpu' or 'cuda:x'
validate_freq frequency of validation
batch_size batch size
norm_method method for normalization, 'z_score' or 'min_max'
early_stop whether to enable early stop, default False

Table 1 Configurations for all datasets

Dataset train evaluate node_cnt window_size horizon norm_method
METR-LA True True 207 12 3 z_score
PEMS-BAY True True 325 12 3 z_score
PEMS03 True True 358 12 3 z_score
PEMS04 True True 307 12 3 z_score
PEMS07 True True 228 12 3 z_score
PEMS08 True True 170 12 3 z_score
COVID-19 True True 25 28 28 z_score

Results

Our model achieves the following performance on the 10 datasets:

Table 2 (predict horizon: 3 steps)

Dataset MAE RMSE MAPE(%)
METR-LA 2.56 5.06 6.46
PEMS-BAY 1.23 2.48 2.63
PEMS03 14.32 21.64 16.24
PEMS04 20.24 32.15 10.03
PEMS07 2.14 4.01 5.01
PEMS08 15.83 24.93 9.26

Table 3 (predict horizon: 28 steps)

Dataset MAE RMSE MAPE
COVID-19 662.24 1023.19 19.3
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022
A simple Python configuration file operator.

A simple Python configuration file operator This project provides a common way to read configurations using config42. Installation It is possible to i

Scott Lau 2 Nov 08, 2021
Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

BlockGAN Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images BlockGAN: Learning 3D Object-aware Scene Rep

41 May 18, 2022
MERLOT: Multimodal Neural Script Knowledge Models

merlot MERLOT: Multimodal Neural Script Knowledge Models MERLOT is a model for learning what we are calling "neural script knowledge" -- representatio

Rowan Zellers 190 Dec 22, 2022
Cascading Feature Extraction for Fast Point Cloud Registration (BMVC 2021)

Cascading Feature Extraction for Fast Point Cloud Registration This repository contains the source code for the paper [Arxive link comming soon]. Meth

7 May 26, 2022
Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might

Andrea Palazzi 2.4k Dec 29, 2022
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation.

TME The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation. Our implementation is based on TG

2 Feb 10, 2022
Static-test - A playground to play with ideas related to testing the comparability of the code

Static test playground ⚠️ The code is just an experiment. Compiles and runs on U

Igor Bogoslavskyi 4 Feb 18, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry Official implementation of the paper Multi-View Depth Est

Bae, Gwangbin 138 Dec 28, 2022
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022
List of content farm sites like g.penzai.com.

内容农场网站清单 Google 中文搜索结果包含了相当一部分的内容农场式条目,比如「小 X 知识网」「小 X 百科网」。此种链接常会 302 重定向其主站,页面内容为自动生成,大量堆叠关键字,揉杂一些爬取到的内容,完全不具可读性和参考价值。 尤为过分的是,该类网站可能有成千上万个分身域名被 Goog

WDMPA 541 Jan 03, 2023
BMVC 2021 Oral: code for BI-GCN: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation

BMVC 2021 BI-GConv: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation Necassary Dependencies: PyTorch 1.2.0 Python 3.

Yanda Meng 15 Nov 08, 2022
A basic reminder tool written in Python.

A simple Python Reminder Here's a basic reminder tool written in Python that speaks to the user and sends a notification. Run pip3 install pyttsx3 w

Sachit Yadav 4 Feb 05, 2022
Duke Machine Learning Winter School: Computer Vision 2022

mlwscv2002 Welcome to the Duke Machine Learning Winter School: Computer Vision 2022! The MLWS-CV includes 3 hands-on training sessions on implementing

Duke + Data Science (+DS) 9 May 25, 2022
MusicYOLO framework uses the object detection model, YOLOx, to locate notes in the spectrogram.

MusicYOLO MusicYOLO framework uses the object detection model, YOLOX, to locate notes in the spectrogram. Its performance on the ISMIR2014 dataset, MI

Xianke Wang 2 Aug 02, 2022
Code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms.

RDC-SLAM This repository contains code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms. The system takes in

40 Nov 19, 2022
AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis.

AITom Introduction AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis. AITom is originated from the tomominer l

93 Jan 02, 2023