Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

Related tags

Deep LearningBlockGAN
Overview

BlockGAN

Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

trans add

BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images
Thu Nguyen-Phuoc, Chrisian Richardt, Long Mai, Yong-liang Yang, Niloy Mitra

Dataset

Please contact Thu Nguyen-Phuoc for datasets.

Training

  • To run the training of BlockGAN
python main.py ./config_synthetic.json --dataset Chair --input_fname_pattern ".png" 

python main.py ./config_real.json --dataset Car --input_fname_pattern ".jpg"

Help with config.json

image_path:
			Full path to the dataset directory.
gpu:
			Index number of the GPU to use. Default: 0.
batch_size:
			Batch size. Defaults is 32.
max_epochs:
			Number of epochs to train. Defaults is 50.
epoch_step:
			Number of epochs to train before starting to decrease the learning rate. Default is 25.
z_dim:
			Dimension of the noise vector. Defaults is 90.
z_dim2:
			Dimension of the noise vector. Defaults is 30.			
d_eta:
			Learning rate of the discriminator.Default is 0.0001
g_eta:
			Learning rate of the generator.Default is 0.0001
reduce_eta:
			Reduce learning rate during training.Default is False
D_update:
			Number of updates for the Discriminator for every training step.Default is 1.
G_update:
			Number of updates for the Generator for every training step.Default is 2.
beta1:
			Beta 1 for the Adam optimiser. Default is 0.5
beta2:
			Beta 2 for the Adam optimiser. Default is 0.999
discriminator:
			Name of the discriminator to use. 
generator:
			Name of the generator to use. 
view_func:
			Name of the view sampling function to use.
skew_func:
			Name of the perspective skew function to use.
train_func:
			Name of the train function to use.
build_func:
			Name of the build function to use.
style_disc:
			Use Style discriminator. Useful for training images at 128.
sample_z:
			Distribution to sample the noise fector. Default is "uniform".
add_D_noise:
			Add noise to the input of the discriminator. Default is "false".
DStyle_lambda:
			Lambda for the style discriminator loss. Default is 1.0
ele_low:
    		        Default is 70.
ele_high:
			Default is 110.
azi_low:
			Default is 0.
azi_high:
			Default is 360.
scale_low:
			Default is 1.0
scale_high:
			Default is 1.0
x_low:
			Default is 0.
x_high:
			Default is 0.
y_low:
			Default is 0.
y_high:
			Default is 0.
z_low:
			Default is 0.
z_high:
			Default is 0.
with_translation:
			To use translation in 3D transformation. Default is "true".
with_scale:
			To use scaling in 3D transformation. Default is "true".
focal_length:
			Camera parameter. Default is 35.
sensor_size:
			Camera parameter. Default is 32.
camera_dist:
			Camera distance. Default is 11.
new_size:
			Voxel grid size. Default is 16.	
size:
			Voxel grid size. Default is 16.	
output_dir: 
			Full path to the output directory.

Citation

If you use this code for your research, please cite our paper

@inproceedings{BlockGAN2020,
  title={ BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images  },
  author={Nguyen-Phuoc, Thu and Richardt, Christian and Mai, Long and Yang, Yong-Liang and Mitra, Niloy},
  booktitle =  {Advances in Neural Information Processing Systems 33},
 month = {Nov},
 year = {2020}
}
Supervised & unsupervised machine-learning techniques are applied to the database of weighted P4s which admit Calabi-Yau hypersurfaces.

Weighted Projective Spaces ML Description: The database of 5-vectors describing 4d weighted projective spaces which admit Calabi-Yau hypersurfaces are

Ed Hirst 3 Sep 08, 2022
Head and Neck Tumour Segmentation and Prediction of Patient Survival Project

Head-and-Neck-Tumour-Segmentation-and-Prediction-of-Patient-Survival Welcome to the Head and Neck Tumour Segmentation and Prediction of Patient Surviv

5 Oct 20, 2022
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
A novel benchmark dataset for Monocular Layout prediction

AutoLay AutoLay: Benchmarking Monocular Layout Estimation Kaustubh Mani, N. Sai Shankar, J. Krishna Murthy, and K. Madhava Krishna Abstract In this pa

Kaustubh Mani 39 Apr 26, 2022
Pytorch Code for "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation"

Medical-Transformer Pytorch Code for the paper "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation" About this repo: This repo

Jeya Maria Jose 615 Dec 25, 2022
Array Camera Ptychography

Array Camera Ptychography This repository provides the code for the following papers: Schulz, Timothy J., David J. Brady, and Chengyu Wang. "Photon-li

Brady lab in Optical Sciences 1 Nov 15, 2021
Code repo for "FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation" (ICCV 2021)

FASA: Feature Augmentation and Sampling Adaptation for Long-Tailed Instance Segmentation (ICCV 2021) This repository contains the implementation of th

Yuhang Zang 21 Dec 17, 2022
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022
Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Part Detector Discovery This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodne

Computer Vision Group Jena 17 Feb 22, 2022
A fast and easy to use, moddable, Python based Minecraft server!

PyMine PyMine - The fastest, easiest to use, Python-based Minecraft Server! Features Note: This list is not always up to date, and doesn't contain all

PyMine 144 Dec 30, 2022
Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Pearl The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid proto

38 Jan 01, 2023
A toolkit for making real world machine learning and data analysis applications in C++

dlib C++ library Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating complex software in C++ to solve real worl

Davis E. King 11.6k Jan 01, 2023
GAN-based Matrix Factorization for Recommender Systems

GAN-based Matrix Factorization for Recommender Systems This repository contains the datasets' splits, the source code of the experiments and their res

Ervin Dervishaj 9 Nov 06, 2022
CS5242_2021 - Neural Networks and Deep Learning, NUS CS5242, 2021

CS5242_2021 Neural Networks and Deep Learning, NUS CS5242, 2021 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : https:/

Xavier Bresson 165 Oct 25, 2022
Hypersearch weight debugging and losses tutorial

tutorial Activate tensorboard option Running TensorBoard remotely When working on a remote server, you can use SSH tunneling to forward the port of th

1 Dec 11, 2021
Evaluating Privacy-Preserving Machine Learning in Critical Infrastructures: A Case Study on Time-Series Classification

PPML-TSA This repository provides all code necessary to reproduce the results reported in our paper Evaluating Privacy-Preserving Machine Learning in

Dominik 1 Mar 08, 2022
Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)

NBFNet: Neural Bellman-Ford Networks This is the official codebase of the paper Neural Bellman-Ford Networks: A General Graph Neural Network Framework

MilaGraph 136 Dec 21, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

55 Dec 27, 2022
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model a

Google 3.2k Dec 31, 2022