Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)

Overview

AlbUNet-1D-2D-Tensorflow-Keras

This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed in Tensorflow-Keras. The code supports Deep Supervision, AutoEncoder mode, Guided Attention and other options. The segmentation models can be used for binary or multiclass segmentation, or for regression tasks.

Models supported [1]

  1. AlbUNet18
  2. AlbUNet34
  3. AlbUNet50
  4. AlbUNet101
  5. AlbUNet152

AlbUNet

AlbUNet has a ResNet based Encoder and traditional UNet based Decoder, as shown in the Figure below for ALbUNet34, which uses ResNet34 as the Encoder.
AlbUNet Architecture
AlbUNet Architecture

Supported Features

The speciality about this model is its flexibility, such as:

  1. The user can choose any of the 5 available AlbUNet variants for either 1D or 2D Segmentation tasks.
  2. The models can be used for Binary or Multi-Class Classification, or Regression type Segmentation tasks.
  3. The models allow Deep Supervision [2] with flexibility during Segmentation.
  4. The segmentation models can also be used as Autoencoders [3] for Feature Extraction.
  5. The Segmentation Models can be Attention Guided [4].
  6. Number of input kernel/filter, commonly known as the Width of the model can be varied.
  7. Number of classes for Classification tasks and number of extracted features for Regression tasks can be varied.
  8. Number of Channels in the Input Dataset can be varied.

Mentionable that the 2D version of AlbUNet can also be used in Transfer Learning from previously trained weights (e.g., ImageNet), just the encoder blocks should be replaced with the trained model layers.

References

[1] A. Shvets, V. Iglovikov, A. Rakhlin, and A. A. Kalinin, “Angiodysplasia detection and localization using deep convolutional neural networks,” arXiv.org, 21-Apr-2018. [Online]. Available: https://arxiv.org/abs/1804.08024. [2] Zhou, Z., Siddiquee, M., Tajbakhsh, N., & Liang, J. (2021). UNet++: Redesigning Skip Connections to Exploit Multiscale Features in Image Segmentation. Arxiv-vanity.com. Retrieved 30 August 2021, from https://www.arxiv-vanity.com/papers/1912.05074/.
[3] Zhou, Z., Siddiquee, M., Tajbakhsh, N., & Liang, J. (2021). UNet++: A Nested U-Net Architecture for Medical Image Segmentation. arXiv.org. Retrieved 30 August 2021, from https://arxiv.org/abs/1807.10165.
[4] M. Noori, A. Bahri, and K. Mohammadi, “Attention-guided version of 2D UNET for automatic brain tumor segmentation,” arXiv.org, 04-Apr-2020. [Online]. Available: https://arxiv.org/abs/2004.02009.

Owner
Sakib Mahmud
Research Assistant | Electrical Engineer | Machine Learning Engineer
Sakib Mahmud
This repo is the code release of EMNLP 2021 conference paper "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories".

Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories This repo is the code release of EMNLP 2021 con

12 Nov 22, 2022
JAX-based neural network library

Haiku: Sonnet for JAX Overview | Why Haiku? | Quickstart | Installation | Examples | User manual | Documentation | Citing Haiku What is Haiku? Haiku i

DeepMind 2.3k Jan 04, 2023
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Jan 05, 2023
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

551 Dec 29, 2022
Taichi Course Homework Template

太极图形课S1-标题部分 这个作业未来或将是你的开源项目,标题的内容可以来自作业中的核心关键词,让读者一眼看出你所完成的工作/做出的好玩demo 如果暂时未想好,起名时可以参考“太极图形课S1-xxx作业” 如下是作业(项目)展开说明的方法,可以帮大家理清思路,并且也对读者非常友好,请小伙伴们多多参

TaichiCourse 30 Nov 19, 2022
Easy Parallel Library (EPL) is a general and efficient deep learning framework for distributed model training.

English | 简体中文 Easy Parallel Library Overview Easy Parallel Library (EPL) is a general and efficient library for distributed model training. Usability

Alibaba 185 Dec 21, 2022
Simple STAC Catalogs discovery tool.

STAC Catalog Discovery Simple STAC discovery tool. Just paste the STAC Catalog link and press Enter. Details STAC Discovery tool enables discovering d

Mykola Kozyr 21 Oct 19, 2022
Image process framework based on plugin like imagej, it is esay to glue with scipy.ndimage, scikit-image, opencv, simpleitk, mayavi...and any libraries based on numpy

Introduction ImagePy is an open source image processing framework written in Python. Its UI interface, image data structure and table data structure a

ImagePy 1.2k Dec 29, 2022
Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

IAug_CDNet Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. Overview We propose a

53 Dec 02, 2022
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

Aviv Shamsian 121 Dec 25, 2022
🔊 Audio and fastai v2

Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe

152 Dec 28, 2022
A simple consistency training framework for semi-supervised image semantic segmentation

PseudoSeg: Designing Pseudo Labels for Semantic Segmentation PseudoSeg is a simple consistency training framework for semi-supervised image semantic s

Google Interns 143 Dec 13, 2022
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022
A novel benchmark dataset for Monocular Layout prediction

AutoLay AutoLay: Benchmarking Monocular Layout Estimation Kaustubh Mani, N. Sai Shankar, J. Krishna Murthy, and K. Madhava Krishna Abstract In this pa

Kaustubh Mani 39 Apr 26, 2022
Gesture recognition on Event Data

Event based Gesture Recognition Gesture recognition on Event Data usually involv

2 Feb 14, 2022
Plugin adapted from Ultralytics to bring YOLOv5 into Napari

napari-yolov5 Plugin adapted from Ultralytics to bring YOLOv5 into Napari. Training and detection can be done using the GUI. Training dataset must be

2 May 05, 2022
Banglore House Prediction Using Flask Server (Python)

Banglore House Prediction Using Flask Server (Python) 🌐 Links 🌐 📂 Repo In this repository, I've implemented a Machine Learning-based Bangalore Hous

Dhyan Shah 1 Jan 24, 2022
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023