AugLiChem - The augmentation library for chemical systems.

Overview

AugLiChem

Build Status codecov

Welcome to AugLiChem! The augmentation library for chemical systems. This package supports augmentation for both crystaline and molecular systems, as well as provides automatic downloading for our benchmark datasets, and easy to use model implementations. In depth documentation about how to use AugLiChem, make use of transformations, and train models is given on our website.

Installation

AugLiChem is a python3.8+ package.

Linux

It is recommended to use an environment manager such as conda to install AugLiChem. Instructions can be found here. If using conda, creating a new environment is ideal and can be done simply by running the following command:

conda create -n auglichem python=3.8

Then activating the new environment with

conda activate auglichem

AugLiChem is built primarily with pytorch and that should be installed independently according to your system specifications. After activating your conda environment, pytorch can be installed easily and instructions are found here.

torch_geometric needs to be installed with conda install pyg -c pyg -c conda-forge.

Once you have pytorch and torch_geometric installed, installing AugLiChem can be done using PyPI:

pip install auglichem

MacOS ARM64 Architecture

A more involved install is required to run on the new M1 chips since some of the packages do not have official support yet. We are working on a more elegant solution given the current limitations.

First, download this repo.

If you do not have it yet,, conda for ARM64 architecture needs to be installed. This can be done with Miniforge (which contains conda installer) which is installed by following the guide here

Once you have miniforge compatible with ARM64 architecture, a new environment with rdkit can be i nstalled. If you do not specify python=3.8 it will default to python=3.9.6 as of the time of writing th is.

conda create -n auglichem python=3.8 rdkit

Now activate the environment:

conda activate auglichem

From here, individual packages can be installed:

conda install -c pytorch pytorch

conda install -c fastchan torchvision

conda install scipy

conda install cython

conda install scikit-learn

pip install torch-scatter -f https://data.pyg.org/whl/torch-1.10.0+cpu.html

pip install torch-sparse -f https://data.pyg.org/whl/torch-1.10.0+cpu.html

pip install torch-geometric

Before installing the package, you must go into setup.py in the main directory and comment out rdkit-pypi and tensorboard from the install_requires list since they are already installed. Not commenting these packages out will result in an error during installation.

Finally, run:

pip install .

Usage guides are provided in the examples/ directory and provide useful guides for using both the molecular and crystal sides of the package. Make sure to install jupyter before working with examples, using conda install jupyter. After installing the package as described above, the example notebooks can be downloaded separately and run locally.

Authors

Rishikesh Magar*, Yuyang Wang*, Cooper Lorsung*, Hariharan Ramasubramanian, Chen Liang, Peiyuan Li, Amir Barati Farimani

*Equal contribution

Paper

Our paper can be found here

Citation

If you use AugLiChem in your work, please cite:

@misc{magar2021auglichem,
      title={AugLiChem: Data Augmentation Library ofChemical Structures for Machine Learning}, 
      author={Rishikesh Magar and Yuyang Wang and Cooper Lorsung and Chen Liang and Hariharan Ramasubramanian and Peiyuan Li and Amir Barati Farimani},
      year={2021},
      eprint={2111.15112},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

License

AugLiChem is MIT licensed, as found in the LICENSE file. Please note that some of the dependencies AugLiChem uses may be licensed under different terms.

Owner
BaratiLab
BaratiLab
Multiple paper open-source codes of the Microsoft Research Asia DKI group

📫 Paper Code Collection (MSRA DKI Group) This repo hosts multiple open-source codes of the Microsoft Research Asia DKI Group. You could find the corr

Microsoft 249 Jan 08, 2023
[MICCAI'20] AlignShift: Bridging the Gap of Imaging Thickness in 3D Anisotropic Volumes

AlignShift NEW: Code for our new MICCAI'21 paper "Asymmetric 3D Context Fusion for Universal Lesion Detection" will also be pushed to this repository

Medical 3D Vision 42 Jan 06, 2023
An end-to-end regression problem of predicting the price of properties in Bangalore.

Bangalore-House-Price-Prediction An end-to-end regression problem of predicting the price of properties in Bangalore. Deployed in Heroku using Flask.

Shruti Balan 1 Nov 25, 2022
Adaptive Attention Span for Reinforcement Learning

Adaptive Transformers in RL Official implementation of Adaptive Transformers in RL In this work we replicate several results from Stabilizing Transfor

100 Nov 15, 2022
This is implementation of AlexNet(2012) with 3D Convolution on TensorFlow (AlexNet 3D).

AlexNet_3dConv TensorFlow implementation of AlexNet(2012) by Alex Krizhevsky, with 3D convolutiional layers. 3D AlexNet Network with a standart AlexNe

Denis Timonin 41 Jan 16, 2022
General Vision Benchmark, a project from OpenGVLab

Introduction We build GV-B(General Vision Benchmark) on Classification, Detection, Segmentation and Depth Estimation including 26 datasets for model e

174 Dec 27, 2022
Construct a neural network frame by Numpy

本项目的CSDN博客链接:https://blog.csdn.net/weixin_41578567/article/details/111482022 1. 概览 本项目主要用于神经网络的学习,通过基于numpy的实现,了解神经网络底层前向传播、反向传播以及各类优化器的原理。 该项目目前已实现的功

24 Jan 22, 2022
N-RPG - Novel role playing game da turfu

N-RPG Ce README sera la page de garde du projet. Contenu Il contiendra la présen

4 Mar 15, 2022
pytorch implementation of GPV-Pose

GPV-Pose Pytorch implementation of GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting. (link) UPDATE A new version

40 Dec 01, 2022
Pocsploit is a lightweight, flexible and novel open source poc verification framework

Pocsploit is a lightweight, flexible and novel open source poc verification framework

cckuailong 208 Dec 24, 2022
PyTorch-Geometric Implementation of MarkovGNN: Graph Neural Networks on Markov Diffusion

MarkovGNN This is the official PyTorch-Geometric implementation of MarkovGNN paper under the title "MarkovGNN: Graph Neural Networks on Markov Diffusi

HipGraph: High-Performance Graph Analytics and Learning 6 Sep 23, 2022
Neural network for digit classification powered by cuda

cuda_nn_mnist Neural network library for digit classification powered by cuda Resources The library was built to work with MNIST dataset. python-mnist

Nikita Ardashev 1 Dec 20, 2021
LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations

LIMEcraft LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations The LIMEcraft algorithm is an explanatory method based on

MI^2 DataLab 4 Aug 01, 2022
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

1 Nov 24, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
Code for "Adversarial attack by dropping information." (ICCV 2021)

AdvDrop Code for "AdvDrop: Adversarial Attack to DNNs by Dropping Information(ICCV 2021)." Human can easily recognize visual objects with lost informa

Ranjie Duan 52 Nov 10, 2022
MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

187 Dec 26, 2022
Official PyTorch Implementation of "AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting".

AgentFormer This repo contains the official implementation of our paper: AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecast

Ye Yuan 161 Dec 23, 2022
This repository contains the code used to quantitatively evaluate counterfactual examples in the associated paper.

On Quantitative Evaluations of Counterfactuals Install To install required packages with conda, run the following command: conda env create -f requi

Frederik Hvilshøj 1 Jan 16, 2022
A general-purpose, flexible, and easy-to-use simulator alongside an OpenAI Gym trading environment for MetaTrader 5 trading platform (Approved by OpenAI Gym)

gym-mtsim: OpenAI Gym - MetaTrader 5 Simulator MtSim is a simulator for the MetaTrader 5 trading platform alongside an OpenAI Gym environment for rein

Mohammad Amin Haghpanah 184 Dec 31, 2022