This repository contains the code used to quantitatively evaluate counterfactual examples in the associated paper.

Overview

On Quantitative Evaluations of Counterfactuals

Install

To install required packages with conda, run the following command:

> conda env create -f requirements.yml

Code

The code contains all the evaluation metrics used in the paper as well as the models and the data.

To evaluate methods, you need to choose a config from the configs directory and to choose which metric to apply. The code will then evaluate the chosen metrics on counterfactuals from all three methods (GB, GL, GEN) and store the results in an appropriate subdirectory in outputs. If you, e.g., want to run all metrics on the MNIST dataset, use the following command:

(cfeval) > python main.py --eval -c configs/mnist/mnist.ini -a

Afterwards you can enumerate the directory by

(cfeval) > python main.py --list

to get an output like the following:

> Listing dirs
000: ./output/celeba_makeup_[0]
001: ./output/fake_mnist_[0]
002: ./output/mnist_0_1_[0]
003: ./output/mnist_[0]

Now, results can be printed for the MNIST dataset (idx 3 above) by

(cfeval) > python main.py --print -c 3 

To get a result like

# # # # # # # # # # # # # # # # # # # # 
# MNIST
# # # # # # # # # # # # # # # # # # # # 
Method \ Metric    TargetClassValidity    ElasticNet    IM1          IM2             FID  Oracle
-----------------  ---------------------  ------------  -----------  -----------  ------  ------------
GB                 99.59 (0.13)           16.07 (0.18)  0.99 (0.00)  0.55 (0.01)   50.23  73.38 (0.87)
GL                 100.00 (0.00)          42.76 (0.31)  0.99 (0.00)  0.53 (0.00)  308.43  37.71 (0.95)
GEN                99.97 (0.03)           99.17 (0.58)  0.88 (0.00)  0.17 (0.00)   90.73  93.13 (0.50)

Directory overview:

File Description
ckpts Contains all the (Keras) models used by the various metrics.
data Contains the data used, both counterfactual examples from GB, GL, and GEN, and original input data.
configs Contains config files specifying experimental details like dataset, normalization, etc.
data Contains the data in numpy arrays.
dataset Code for loading data.
evaluate Implementations of all the metrics.
output Directory to hold computed results. Directory already contains results from paper.
config.py Reads config files from configs
constants.py Method and metric names.
listing.py Utility for indexing output dirs (see description below)
main.py Main file to run all code through.
print_results.py Utillity function for printing results from json files in the output directory.
Owner
Frederik Hvilshøj
PhD Student. Finishing PhD in Machine Learning Fall 2021.
Frederik Hvilshøj
FluxTraining.jl gives you an endlessly extensible training loop for deep learning

A flexible neural net training library inspired by fast.ai

86 Dec 31, 2022
Blender Add-on that sets a Material's Base Color to one of Pantone's Colors of the Year

Blender PCOY (Pantone Color of the Year) MCMC (Mid-Century Modern Colors) HG71 (House & Garden Colors 1971) Blender Add-ons That Assign a Custom Color

Don Schnitzius 15 Nov 20, 2022
TGS Salt Identification Challenge

TGS Salt Identification Challenge This is an open solution to the TGS Salt Identification Challenge. Note Unfortunately, we can no longer provide supp

neptune.ai 123 Nov 04, 2022
MTCNN face detection implementation for TensorFlow, as a PIP package.

MTCNN Implementation of the MTCNN face detector for Keras in Python3.4+. It is written from scratch, using as a reference the implementation of MTCNN

Iván de Paz Centeno 1.9k Dec 30, 2022
Plenoxels: Radiance Fields without Neural Networks, Code release WIP

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Alex Yu 2.3k Dec 30, 2022
Distributed Asynchronous Hyperparameter Optimization in Python

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

6.5k Jan 01, 2023
Azua - build AI algorithms to aid efficient decision-making with minimum data requirements.

Project Azua 0. Overview Many modern AI algorithms are known to be data-hungry, whereas human decision-making is much more efficient. The human can re

Microsoft 197 Jan 06, 2023
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022
PyKaldi GOP-DNN on Epa-DB

PyKaldi GOP-DNN on Epa-DB This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spani

18 Dec 14, 2022
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples (WACV 2022) and Beyond Simple Meta-Learning: Multi-Purpose Model

PLAI Group at UBC 42 Dec 06, 2022
U-Net: Convolutional Networks for Biomedical Image Segmentation

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras This tutorial shows how to use Keras library to build deep ne

Yihui He 401 Nov 21, 2022
A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required.

Fluke289_data_access A series of Python scripts to access measurements from Fluke 28X meters. Fluke IR Remote Interface required. Created from informa

3 Dec 08, 2022
Message Passing on Cell Complexes

CW Networks This repository contains the code used for the papers Weisfeiler and Lehman Go Cellular: CW Networks (Under review) and Weisfeiler and Leh

Twitter Research 108 Jan 05, 2023
This project aims at providing a concise, easy-to-use, modifiable reference implementation for semantic segmentation models using PyTorch.

Semantic Segmentation on PyTorch (include FCN, PSPNet, Deeplabv3, Deeplabv3+, DANet, DenseASPP, BiSeNet, EncNet, DUNet, ICNet, ENet, OCNet, CCNet, PSANet, CGNet, ESPNet, LEDNet, DFANet)

2.4k Jan 08, 2023
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models

PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models Code accompanying CVPR'20 paper of the same title. Paper lin

Alex Damian 7k Dec 30, 2022
Api for getting bin info and getting encrypted card details for adyen.

Bin Info And Adyen Cse Enc Python api for getting bin info and getting encrypted

Roldex Stark 8 Dec 30, 2022
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
OneShot Learning-based hotword detection.

EfficientWord-Net Hotword detection based on one-shot learning Home assistants require special phrases called hotwords to get activated (eg:"ok google

ANT-BRaiN 102 Dec 25, 2022
BankNote-Net: Open dataset and encoder model for assistive currency recognition

BankNote-Net: Open Dataset for Assistive Currency Recognition Millions of people around the world have low or no vision. Assistive software applicatio

Microsoft 13 Oct 28, 2022
CIFAR-10 Photo Classification

Image-Classification CIFAR-10 Photo Classification CIFAR-10_Dataset_Classfication CIFAR-10 Photo Classification Dataset CIFAR is an acronym that stand

ADITYA SHAH 1 Jan 05, 2022