Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Overview

Improved Few-Shot Visual Classification

This repository contains source codes for the following papers:

The code base has been authored by Peyman Bateni, Jarred Barber, Raghav Goyal, Vaden Masrani, Dr. Jan-Willemn van de Meent, Dr. Leonid Sigal and Dr. Frank Wood. The source codes build on the original code base for CNAPS authored by Dr. John Bronskill, Jonathan Gordon, James Reqeima, Dr. Sebastian Nowozin, and Dr. Richard E. Turner. We would like to thank them for their help, support and early sharing of their work. To see the original CNAPS repository, visit https://github.com/cambridge-mlg/cnaps.

Simple CNAPS

Simple CNAPS proposes the use of hierarchically regularized cluster means and covariance estimates within a Mahalanobis-distance based classifer for improved few-shot classification accuracy. This method incorporates said classifier within the same neural adaptive feature extractor as CNAPS. For more details, please refer to our paper on Simple CNAPS: Improved Few-Shot Visual Classification. The source code for this paper has been provided in the simple-cnaps-src directory. To reproduce our results, please refer to the README.md file within that folder.

Global Meta-Dataset Rank (Simple CNAPS): https://github.com/google-research/meta-dataset#training-on-all-datasets

Global Mini-ImageNet Rank (Simple CNAPS):

PWC PWC PWC PWC

Global Tiered-ImageNet Rank (Simple CNAPS):

PWC PWC PWC PWC

Transductive CNAPS

Transductive CNAPS extends the Simple CNAPS framework to the transductive few-shot learning setting where all query examples are provided at once. This method uses a two-step transductive task-encoder for adapting the feature extractor as well as a soft k-means cluster refinement procedure, resulting in better test-time accuracy. For additional details, please refer to our paper on Transductive CNAPS: Enhancing Few-Shot Image Classification with Unlabelled Examples. The source code for this work is provided under the transductive-cnaps-src directory. To reproduce our results, please refer to the README.md file within this folder.

Global Meta-Dataset Rank (Transductive CNAPS): https://github.com/google-research/meta-dataset#training-on-all-datasets

Global Mini-ImageNet Rank (Transductive CNAPS):

PWC PWC PWC PWC

Global Tiered-ImageNet Rank (Transductive CNAPS):

PWC PWC PWC PWC

Active and Continual Learning

We additionally evaluate both methods within the paradigms of "out of the box" active and continual learning. These settings were first proposed by Requeima et al., and studies how well few-shot classifiers, trained for few-shot learning, can be deployed for active and continual learning without any problem-specific finetuning or training. For additional details on our active and continual learning experiments and algorithms, please refer to our latest paper: Beyond Simple Meta-Learning: Multi-Purpose Models for Multi-Domain, Active and Continual Few-Shot Learning. For code and instructions to reproduce the experiments reported, please refer to the active-learning and continual-learning folders.

Meta-Dataset Results

| Dataset | Simple CNAPS | Simple CNAPS | Transductive CNAPS | Transductive CNAPS |

--shuffle_dataset False False True False True
In-Domain Datasets --- --- --- ---
ILSVRC 58.6±1.1 56.5±1.1 58.8±1.1 57.9±1.1
Omniglot 91.7±0.6 91.9±0.6 93.9±0.4 94.3±0.4
Aircraft 82.4±0.7 83.8±0.6 84.1±0.6 84.7±0.5
Birds 74.9±0.8 76.1±0.9 76.8±0.8 78.8±0.7
Textures 67.8±0.8 70.0±0.8 69.0±0.8 66.2±0.8
Quick Draw 77.7±0.7 78.3±0.7 78.6±0.7 77.9±0.6
Fungi 46.9±1.0 49.1±1.2 48.8±1.1 48.9±1.2
VGG Flower 90.7±0.5 91.3±0.6 91.6±0.4 92.3±0.4
Out-of-Domain Datasets --- --- --- ---
Traffic Signs 73.5±0.7 59.2±1.0 76.1±0.7 59.7±1.1
MSCOCO 46.2±1.1 42.4±1.1 48.7±1.0 42.5±1.1
MNIST 93.9±0.4 94.3±0.4 95.7±0.3 94.7±0.3
CIFAR10 74.3±0.7 72.0±0.8 75.7±0.7 73.6±0.7
CIFAR100 60.5±1.0 60.9±1.1 62.9±1.0 61.8±1.0
--- --- --- --- ---
In-Domain Average Accuracy 73.8±0.8 74.6±0.8 75.2±0.8 75.1±0.8
Out-of-Domain Average Accuracy 69.7±0.8 65.8±0.8 71.8±0.8 66.5±0.8
Overall Average Accuracy 72.2±0.8 71.2±0.8 73.9±0.8 71.8±0.8

Mini-ImageNet Results

Setup 5-way 1-shot 5-way 5-shot 10-way 1-shot 10-way 5-shot
Simple CNAPS 53.2±0.9 70.8±0.7 37.1±0.5 56.7±0.5
Transductive CNAPS 55.6±0.9 73.1±0.7 42.8±0.7 59.6±0.5
--- --- --- --- ---
Simple CNAPS + FETI 77.4±0.8 90.3±0.4 63.5±0.6 83.1±0.4
Transductive CNAPS + FETI 79.9±0.8 91.5±0.4 68.5±0.6 85.9±0.3

Tiered-ImageNet Results

Setup 5-way 1-shot 5-way 5-shot 10-way 1-shot 10-way 5-shot
Simple CNAPS 63.0±1.0 80.0±0.8 48.1±0.7 70.2±0.6
Transductive CNAPS 65.9±1.0 81.8±0.7 54.6±0.8 72.5±0.6
--- --- --- --- ---
Simple CNAPS + FETI 71.4±1.0 86.0±0.6 57.1±0.7 78.5±0.5
Transductive CNAPS + FETI 73.8±1.0 87.7±0.6 65.1±0.8 80.6±0.5

Citation

We hope you have found our code base helpful! If you use this repository, please cite our papers:

@InProceedings{Bateni2020_SimpleCNAPS,
    author = {Bateni, Peyman and Goyal, Raghav and Masrani, Vaden and Wood, Frank and Sigal, Leonid},
    title = {Improved Few-Shot Visual Classification},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2020}
}

@InProceedings{Bateni2022_TransductiveCNAPS,
    author    = {Bateni, Peyman and Barber, Jarred and van de Meent, Jan-Willem and Wood, Frank},
    title     = {Enhancing Few-Shot Image Classification With Unlabelled Examples},
    booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
    month     = {January},
    year      = {2022},
    pages     = {2796-2805}
}

@misc{Bateni2022_BeyondSimpleMetaLearning,
    title={Beyond Simple Meta-Learning: Multi-Purpose Models for Multi-Domain, Active and Continual Few-Shot Learning}, 
    author={Peyman Bateni and Jarred Barber and Raghav Goyal and Vaden Masrani and Jan-Willem van de Meent and Leonid Sigal and Frank Wood},
    year={2022},
    eprint={2201.05151},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

**If you would like to ask any questions or reach out regarding any of the papers, please email me directly at [email protected] (my cs.ubc.ca email may have expired by the time you are emailing as I have graduated!).

Owner
PLAI Group at UBC
PLAI Group at UBC
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
[CVPR2021] DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets

DoDNet This repo holds the pytorch implementation of DoDNet: DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datase

116 Dec 12, 2022
Quantum-enhanced transformer neural network

Example of a Quantum-enhanced transformer neural network Get the code: git clone https://github.com/rdisipio/qtransformer.git cd qtransformer Create

Riccardo Di Sipio 61 Nov 08, 2022
Learning Chinese Character style with conditional GAN

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me

Yuchen Tian 2.2k Jan 02, 2023
MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

MultiMix This repository contains the implementation of MultiMix. Our publications for this project are listed below: "MultiMix: Sparingly Supervised,

Ayaan Haque 27 Dec 22, 2022
Safe Local Motion Planning with Self-Supervised Freespace Forecasting, CVPR 2021

Safe Local Motion Planning with Self-Supervised Freespace Forecasting By Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan Citing us Yo

Peiyun Hu 90 Dec 01, 2022
Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index.

TechSEO Crawler Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index. Play with the r

JR Oakes 57 Nov 24, 2022
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views

Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re

Linyi Jin 89 Jan 05, 2023
Unofficial implementation of HiFi-GAN+ from the paper "Bandwidth Extension is All You Need" by Su, et al.

HiFi-GAN+ This project is an unoffical implementation of the HiFi-GAN+ model for audio bandwidth extension, from the paper Bandwidth Extension is All

Brent M. Spell 134 Dec 30, 2022
Physics-informed convolutional-recurrent neural networks for solving spatiotemporal PDEs

PhyCRNet Physics-informed convolutional-recurrent neural networks for solving spatiotemporal PDEs Paper link: [ArXiv] By: Pu Ren, Chengping Rao, Yang

Pu Ren 11 Aug 23, 2022
MPRNet-Cloud-removal: Progressive cloud removal

MPRNet-Cloud-removal Progressive cloud removal Requirements 1.Pytorch = 1.0 2.Python 3 3.NVIDIA GPU + CUDA 9.0 4.Tensorboard Installation 1.Clone the

Semi 95 Dec 18, 2022
3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

3rd Place Solution of Traffic4Cast 2021 Core Challenge This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge. Paper Our so

7 Jul 25, 2022
Constraint-based geometry sketcher for blender

Constraint-based sketcher addon for Blender that allows to create precise 2d shapes by defining a set of geometric constraints like tangent, distance,

1.7k Dec 31, 2022
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

DLR-RM 4.7k Jan 01, 2023
Implementation of the federated dual coordinate descent (FedDCD) method.

FedDCD.jl Implementation of the federated dual coordinate descent (FedDCD) method. Installation To install, just call Pkg.add("https://github.com/Zhen

Zhenan Fan 6 Sep 21, 2022
This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes.

Rotate-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes. Section I. Description The codes are

xinzelee 90 Dec 13, 2022
Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included.

pixel_character_generator Generating retro pixel game characters with Generative Adversarial Networks. Dataset "TinyHero" included. Dataset TinyHero D

Agnieszka Mikołajczyk 88 Nov 17, 2022
Official implementation of "Robust channel-wise illumination estimation"

This repository provides the official implementation of "Robust channel-wise illumination estimation." accepted in BMVC (2021).

Firas Laakom 4 Nov 08, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022