MTCNN face detection implementation for TensorFlow, as a PIP package.

Overview

MTCNN

https://travis-ci.org/ipazc/mtcnn.svg?branch=master

Implementation of the MTCNN face detector for Keras in Python3.4+. It is written from scratch, using as a reference the implementation of MTCNN from David Sandberg (FaceNet's MTCNN) in Facenet. It is based on the paper Zhang, K et al. (2016) [ZHANG2016].

https://github.com/ipazc/mtcnn/raw/master/result.jpg

INSTALLATION

Currently it is only supported Python3.4 onwards. It can be installed through pip:

$ pip install mtcnn

This implementation requires OpenCV>=4.1 and Keras>=2.0.0 (any Tensorflow supported by Keras will be supported by this MTCNN package). If this is the first time you use tensorflow, you will probably need to install it in your system:

$ pip install tensorflow

or with conda

$ conda install tensorflow

Note that tensorflow-gpu version can be used instead if a GPU device is available on the system, which will speedup the results.

USAGE

The following example illustrates the ease of use of this package:

>>> from mtcnn import MTCNN
>>> import cv2
>>>
>>> img = cv2.cvtColor(cv2.imread("ivan.jpg"), cv2.COLOR_BGR2RGB)
>>> detector = MTCNN()
>>> detector.detect_faces(img)
[
    {
        'box': [277, 90, 48, 63],
        'keypoints':
        {
            'nose': (303, 131),
            'mouth_right': (313, 141),
            'right_eye': (314, 114),
            'left_eye': (291, 117),
            'mouth_left': (296, 143)
        },
        'confidence': 0.99851983785629272
    }
]

The detector returns a list of JSON objects. Each JSON object contains three main keys: 'box', 'confidence' and 'keypoints':

  • The bounding box is formatted as [x, y, width, height] under the key 'box'.
  • The confidence is the probability for a bounding box to be matching a face.
  • The keypoints are formatted into a JSON object with the keys 'left_eye', 'right_eye', 'nose', 'mouth_left', 'mouth_right'. Each keypoint is identified by a pixel position (x, y).

Another good example of usage can be found in the file "example.py." located in the root of this repository. Also, you can run the Jupyter Notebook "example.ipynb" for another example of usage.

BENCHMARK

The following tables shows the benchmark of this mtcnn implementation running on an Intel i7-3612QM CPU @ 2.10GHz, with a CPU-based Tensorflow 1.4.1.

  • Pictures containing a single frontal face:
Image size Total pixels Process time FPS
460x259 119,140 0.118 seconds 8.5
561x561 314,721 0.227 seconds 4.5
667x1000 667,000 0.456 seconds 2.2
1920x1200 2,304,000 1.093 seconds 0.9
4799x3599 17,271,601 8.798 seconds 0.1
  • Pictures containing 10 frontal faces:
Image size Total pixels Process time FPS
474x224 106,176 0.185 seconds 5.4
736x348 256,128 0.290 seconds 3.4
2100x994 2,087,400 1.286 seconds 0.7

MODEL

By default the MTCNN bundles a face detection weights model.

The model is adapted from the Facenet's MTCNN implementation, merged in a single file located inside the folder 'data' relative to the module's path. It can be overriden by injecting it into the MTCNN() constructor during instantiation.

The model must be numpy-based containing the 3 main keys "pnet", "rnet" and "onet", having each of them the weights of each of the layers of the network.

For more reference about the network definition, take a close look at the paper from Zhang et al. (2016) [ZHANG2016].

LICENSE

MIT License.

REFERENCE

[ZHANG2016] (1, 2) Zhang, K., Zhang, Z., Li, Z., and Qiao, Y. (2016). Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 23(10):1499–1503.
Owner
Iván de Paz Centeno
Lead Data Scientist, R&D Engineer at Smarkia.
Iván de Paz Centeno
Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

The Picasso Library is intended for complex real-world applications with large-scale surfaces, while it also performs impressively on the small-scale applications over synthetic shape manifolds. We h

97 Dec 01, 2022
UFT - Universal File Transfer With Python

UFT 2.0.0 UFT (Universal File Transfer) is a CLI tool , which can be used to upl

Merwin 1 Feb 18, 2022
The fastest way to visualize GradCAM with your Keras models.

VizGradCAM VizGradCam is the fastest way to visualize GradCAM in Keras models. GradCAM helps with providing visual explainability of trained models an

58 Nov 19, 2022
Labels4Free: Unsupervised Segmentation using StyleGAN

Labels4Free: Unsupervised Segmentation using StyleGAN ICCV 2021 Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthet

70 Dec 23, 2022
A deep learning library that makes face recognition efficient and effective

Distributed Arcface Training in Pytorch This is a deep learning library that makes face recognition efficient, and effective, which can train tens of

Sajjad Aemmi 10 Nov 23, 2021
An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

Kakao Brain 72 Dec 28, 2022
Lane follower: Lane-detector (OpenCV) + Object-detector (YOLO5) + CAN-bus

Lane Follower This code is for the lane follower, including perception and control, as shown below. Environment Hardware Industrial Camera Intel-NUC(1

Siqi Fan 3 Jul 07, 2022
Official Code for "Non-deep Networks"

Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Overview: Depth is the hallmark of DNNs. But more depth m

Ankit Goyal 567 Dec 12, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.

FFB6D This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv) Tab

Yisheng (Ethan) He 201 Dec 28, 2022
Code for CVPR 2021 oral paper "Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts"

Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts The rapid progress in 3D scene understanding has come with growing dem

Facebook Research 182 Dec 30, 2022
Scalable machine learning based time series forecasting

mlforecast Scalable machine learning based time series forecasting. Install PyPI pip install mlforecast Optional dependencies If you want more functio

Nixtla 145 Dec 24, 2022
Cl datasets - PyTorch image dataloaders and utility functions to load datasets for supervised continual learning

Continual learning datasets Introduction This repository contains PyTorch image

berjaoui 5 Aug 28, 2022
PyTorch CZSL framework containing GQA, the open-world setting, and the CGE and CompCos methods.

Compositional Zero-Shot Learning This is the official PyTorch code of the CVPR 2021 works Learning Graph Embeddings for Compositional Zero-shot Learni

EML Tübingen 70 Dec 27, 2022
Code for the ICML 2021 paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision"

ViLT Code for the paper: "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision" Install pip install -r requirements.txt pip

Wonjae Kim 922 Jan 01, 2023
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
CUDA Python Low-level Bindings

CUDA Python Low-level Bindings

NVIDIA Corporation 529 Jan 03, 2023
JAX bindings to the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) library

JAX bindings to FINUFFT This package provides a JAX interface to (a subset of) the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) lib

Dan Foreman-Mackey 32 Oct 15, 2022
Generating Anime Images by Implementing Deep Convolutional Generative Adversarial Networks paper

AnimeGAN - Deep Convolutional Generative Adverserial Network PyTorch implementation of DCGAN introduced in the paper: Unsupervised Representation Lear

Rohit Kukreja 23 Jul 21, 2022