This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

Overview

ICCV Workshop 2021 VTGAN

PWC

This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers" which is part of the supplementary materials for ICCV 2021 Workshop on Computer Vision for Automated Medical Diagnosis. The paper has since been accpeted and presented at ICCV 2021 Workshop.

Arxiv Pre-print

https://arxiv.org/abs/2104.06757

CVF ICCVW 2021

https://openaccess.thecvf.com/content/ICCV2021W/CVAMD/html/Kamran_VTGAN_Semi-Supervised_Retinal_Image_Synthesis_and_Disease_Prediction_Using_Vision_ICCVW_2021_paper.html

IEE Xplore ICCVW 2021

https://ieeexplore.ieee.org/document/9607858

Citation

@INPROCEEDINGS{9607858,
  author={Kamran, Sharif Amit and Hossain, Khondker Fariha and Tavakkoli, Alireza and Zuckerbrod, Stewart Lee and Baker, Salah A.},
  booktitle={2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)}, 
  title={VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers}, 
  year={2021},
  volume={},
  number={},
  pages={3228-3238},
  doi={10.1109/ICCVW54120.2021.00362}
}

Pre-requisite

  • Ubuntu 18.04 / Windows 7 or later
  • NVIDIA Graphics card

Installation Instruction for Ubuntu

sudo add-apt-repository ppa:deadsnakes/ppa
sudo apt install python3.7
  • Install Tensorflow-Gpu version-2.5.0 and Keras version-2.5.0
sudo pip3 install tensorflow-gpu
sudo pip3 install keras
  • Install packages from requirements.txt
sudo pip3 install -r requirements.txt

Dataset download link for Hajeb et al.

https://sites.google.com/site/hosseinrabbanikhorasgani/datasets-1/fundus-fluorescein-angiogram-photographs--colour-fundus-images-of-diabetic-patients
  • Please cite the paper if you use their data
@article{hajeb2012diabetic,
  title={Diabetic retinopathy grading by digital curvelet transform},
  author={Hajeb Mohammad Alipour, Shirin and Rabbani, Hossein and Akhlaghi, Mohammad Reza},
  journal={Computational and mathematical methods in medicine},
  volume={2012},
  year={2012},
  publisher={Hindawi}
}
  • Folder structure for data-preprocessing given below. Please make sure it matches with your local repository.
├── Dataset
|   ├──ABNORMAL
|   ├──NORMAL

Dataset Pre-processing

  • Type this in terminal to run the random_crop.py file
python3 random_crop.py --output_dir=data --input_dim=512 --datadir=Dataset
  • There are different flags to choose from. Not all of them are mandatory.
    '--input_dim', type=int, default=512
    '--n_crops', type=int, default=50
    '--datadir', type=str, required=True, help='path/to/data_directory',default='Dataset'
    '--output_dir', type=str, default='data'   

NPZ file conversion

  • Convert all the images to npz format
python3 convert_npz.py --outfile_name=vtgan --input_dim=512 --datadir=data --n_crops=50
  • There are different flags to choose from. Not all of them are mandatory.
    '--input_dim', type=int, default=512
    '--n_crops', type=int, default=50
    '--datadir', type=str, required=True, help='path/to/data_directory',default='data'
    '--outfile_name', type=str, default='vtgan'
    '--n_images', type=int, default=17

Training

  • Type this in terminal to run the train.py file
python3 train.py --npz_file=vtgan --batch=2 --epochs=100 --savedir=VTGAN
  • There are different flags to choose from. Not all of them are mandatory
    '--epochs', type=int, default=100
    '--batch_size', type=int, default=2
    '--npz_file', type=str, default='vtgan', help='path/to/npz/file'
    '--input_dim', type=int, default=512
    '--n_patch', type=int, default=64
    '--savedir', type=str, required=False, help='path/to/save_directory',default='VTGAN'
    '--resume_training', type=str, required=False,  default='no', choices=['yes','no']

License

The code is released under the BSD 3-Clause License, you can read the license file included in the repository for details.

Owner
Sharif Amit Kamran
Interested in Deep learning for Medical Imaging and Computer Vision. Designing robust generative architectures for Ophthalmology and Calcium Imaging.
Sharif Amit Kamran
CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

CLOCs is a novel Camera-LiDAR Object Candidates fusion network. It provides a low-complexity multi-modal fusion framework that improves the performance of single-modality detectors. CLOCs operates on

Su Pang 254 Dec 16, 2022
Image Segmentation using U-Net, U-Net with skip connections and M-Net architectures

Brain-Image-Segmentation Segmentation of brain tissues in MRI image has a number of applications in diagnosis, surgical planning, and treatment of bra

Angad Bajwa 8 Oct 27, 2022
Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Erdene-Ochir Tuguldur 276 Dec 20, 2022
Group Activity Recognition with Clustered Spatial Temporal Transformer

GroupFormer Group Activity Recognition with Clustered Spatial-TemporalTransformer Backbone Style Action Acc Activity Acc Config Download Inv3+flow+pos

28 Dec 12, 2022
A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation

Aboleth A bare-bones TensorFlow framework for Bayesian deep learning and Gaussian process approximation [1] with stochastic gradient variational Bayes

Gradient Institute 127 Dec 12, 2022
Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline

Built a deep neural network (DNN) that functions as an end-to-end machine translation pipeline. The pipeline accepts english text as input and returns the French translation.

Afropunk Technologist 1 Jan 24, 2022
Deep motion transfer

animation-with-keypoint-mask Paper The right most square is the final result. Softmax mask (circles): \ Heatmap mask: \ conda env create -f environmen

9 Nov 01, 2022
PASSL包含 SimCLR,MoCo,BYOL,CLIP等基于对比学习的图像自监督算法以及 Vision-Transformer,Swin-Transformer,BEiT,CVT,T2T,MLP_Mixer等视觉Transformer算法

PASSL Introduction PASSL is a Paddle based vision library for state-of-the-art Self-Supervised Learning research with PaddlePaddle. PASSL aims to acce

186 Dec 29, 2022
Neural HMMs are all you need (for high-quality attention-free TTS)

Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official

Shivam Mehta 0 Oct 28, 2022
A practical ML pipeline for data labeling with experiment tracking using DVC.

Auto Label Pipeline A practical ML pipeline for data labeling with experiment tracking using DVC Goals: Demonstrate reproducible ML Use DVC to build a

Todd Cook 4 Mar 08, 2022
REBEL: Relation Extraction By End-to-end Language generation

REBEL: Relation Extraction By End-to-end Language generation This is the repository for the Findings of EMNLP 2021 paper REBEL: Relation Extraction By

Babelscape 222 Jan 06, 2023
Best practices for segmentation of the corporate network of any company

Best-practice-for-network-segmentation What is this? This project was created to publish the best practices for segmentation of the corporate network

2k Jan 07, 2023
Code for the ICASSP-2021 paper: Continuous Speech Separation with Conformer.

Continuous Speech Separation with Conformer Introduction We examine the use of the Conformer architecture for continuous speech separation. Conformer

Sanyuan Chen (陈三元) 81 Nov 28, 2022
QueryDet: Cascaded Sparse Query for Accelerating High-Resolution SmallObject Detection

QueryDet-PyTorch This repository is the official implementation of our paper: QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small O

Chenhongyi Yang 276 Dec 31, 2022
HyperLib: Deep learning in the Hyperbolic space

HyperLib: Deep learning in the Hyperbolic space Background This library implements common Neural Network components in the hypberbolic space (using th

105 Dec 25, 2022
basic tutorial on pytorch

Quick Tutorial on PyTorch PyTorch Basics Linear Regression Logistic Regression Artificial Neural Networks Convolutional Neural Networks Recurrent Neur

7 Sep 15, 2022
Accelerated Multi-Modal MR Imaging with Transformers

Accelerated Multi-Modal MR Imaging with Transformers Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 torch==1.7.0 runstats==1.8.0 p

54 Dec 16, 2022
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022
Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing"

ProxyFL Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing" Authors: Shivam Kalra*, Junfeng Wen*, Jess

Layer6 Labs 14 Dec 06, 2022
Unofficial Implementation of Oboe (SIGCOMM'18').

Oboe-Reproduce This is the unofficial implementation of the paper "Oboe: Auto-tuning video ABR algorithms to network conditions, Zahaib Akhtar, Yun Se

Tianchi Huang 13 Nov 04, 2022