ilpyt: imitation learning library with modular, baseline implementations in Pytorch

Overview

ilpyt

The imitation learning toolbox (ilpyt) contains modular implementations of common deep imitation learning algorithms in PyTorch, with unified infrastructure supporting key imitation learning and reinforcement learning algorithms. You can read more about ilpyt in our white paper.

Documentation is available here.

Table of Contents

Main Features

  • Implementation of baseline imitation learning algorithms: BC, DAgger, AppL, GCL, GAIL.
  • Implementation of baseline reinforcement learning algorithms, for comparison purposes: DQN, A2C, PPO2.
  • Modular, extensible framework for training, evaluating, and testing imitation learning (and reinforcement learning) algorithms.
  • Simple algorithm API which exposes train and test methods, allowing for quick library setup and use (a basic usage of the library requires less than ten lines of code to have a fully functioning train and test pipeline).
  • A modular infrastructure for easy modification and reuse of existing components for novel algorithm implementations.
  • Parallel and serialization modes, allowing for faster, optimized operations or serial operations for debugging.
  • Compatibility with the OpenAI Gym environment interface for access to many existing benchmark learning environments, as well as the flexibility to create custom environments.

Installation

Note: ilpyt has only been tested on Ubuntu 20.04, and with Python 3.8.5.

  1. In order to install ilpyt, there are a few prerequisites required. The following commands will setup all the basics so you can run ilpyt with the OpenAI Gym environments:
# Install system-based packages
apt-get install cmake python3-pip python3-testresources freeglut3-dev xvfb

# Install Wheel
pip3 install --no-cache-dir --no-warn-script-location wheel
  1. Install ilpyt using pip:
pip3 install ilpyt

# Or to install from source:
# pip3 install -e .
  1. (Optional) Run the associated Python tests to confirm the package has installed successfully:
git clone https://github.com/mitre/ilpyt.git
cd ilpyt/

# To run all the tests
# If running headless, prepend the pytest command with `xvfb-run -a -s "-screen 0 1400x900x24 +extension RANDR" --`
pytest tests/

# Example: to run an individual test, like DQN
pytest tests/test_dqn.py 

Getting Started

Various sample Python script(s) of how to run the toolbox can be found within the examples directory. Documentation is available here.

Basic Usage

Various sample Python script(s) of how to run the toolbox can be found within the examples directory. A minimal train and test snippet for an imitation learning algorithm takes less than 10 lines of code in ilpyt. In this basic example, we are training a behavioral cloning algorithm for 10,000 epochs before testing the best policy for 100 episodes.

import ilpyt
from ilpyt.agents.imitation_agent import ImitationAgent
from ilpyt.algos.bc import BC

env = ilpyt.envs.build_env(env_id='LunarLander-v2',  num_env=16)
net = ilpyt.nets.choose_net(env)
agent = ImitationAgent(net=net, lr=0.0001)

algo = BC(agent=agent, env=env)
algo.train(num_epochs=10000, expert_demos='demos/LunarLander-v2/demos.pkl')
algo.test(num_episodes=100)

Code Organization

workflow

At a high-level, the algorithm orchestrates the training and testing of our agent in a particular environment. During these training or testing loops, a runner will execute the agent and environment in a loop to collect (state, action, reward, next state) transitions. The individual components of a transition (e.g., state or action) are typically torch Tensors. The agent can then use this batch of transitions to update its network and move towards an optimal action policy.

Customization

To implement a new algorithm, one simply has to extend the BaseAlgorithm and BaseAgent abstract classes (for even further customization, one can even make custom networks by extending the BaseNetwork interface). Each of these components is modular (see code organization for more details), allowing components to be easily swapped out. (For example, the agent.generator used in the GAIL algorithm can be easily swapped between PPOAgent, DQNAgent, or A2Cagent. In a similar way, new algorithm implementations can utilize existing implemented classes as building blocks, or extend the class interfaces for more customization.)

Adding a custom environment is as simple as extending the OpenAI Gym Environment interface and registering it within your local gym environment registry.

See agents/base_agent.py, algos/base_algo.py, nets/base_net.py for more details.

Supported Algorithms and Environments

The following imitation learning (IL) algorithms are supported:

The following reinforcement learning (RL) algorithms are supported:

The following OpenAI Gym Environments are supported. Environments with:

  • Observation space: Box(x,) and Box(x,y,z)
  • Action space: Discrete(x) and Box(x,)

NOTE: To create your own custom environment, just follow the OpenAI Gym Environment interface. i.e., your environment must implement the following methods (and inherit from the OpenAI Gym Class). More detailed instructions can be found on the OpenAI GitHub repository page on creating custom Gym environments.

Benchmarks

Sample train and test results of the baseline algorithms on some environments:

CartPole-v0 MountainCar-v0 MountainCarContinuous-v0 LunarLander-v2 LunarLanderContinuous-v2
Threshold 200 -110 90 200 200
Expert (Mean/Std) 200.00 / 0.00 -98.71 / 7.83 93.36 / 0.05 268.09 / 21.18 283.83 / 17.70
BC (Mean/Std) 200.00 / 0.00 -100.800 / 13.797 93.353 / 0.113 244.295 / 97.765 285.895 / 14.584
DAgger (Mean/Std) 200.00 / 0.00 -102.36 / 15.38 93.20 / 0.17 230.15 / 122.604 285.85 / 14.61
GAIL (Mean/Std) 200.00 / 0.00 -104.31 / 17.21 79.78 / 6.23 201.88 / 93.82 282.00 / 31.73
GCL 200.00 / 0.00 - - 212.321 / 119.933 255.414 / 76.917
AppL(Mean/Std) 200.00 / 0.00 -108.60 / 22.843 - - -
DQN (Mean/Std) - - - 281.96 / 24.57 -
A2C (Mean/Std) - - 201.26 / 62.52 -
PPO (Mean/Std) - - - 249.72 / 75.05 -

The pre-trained weights for these models can be found in our Model Zoo.

Citation

If you use ilpyt for your work, please cite our white paper:

@misc{ilpyt_2021,
  author = {Vu, Amanda and Tapley, Alex and Bissey, Brett},
  title = {ilpyt: Imitation Learning Research Code Base in PyTorch},
  year = {2021},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/mitre/ilpyt}},
}
Owner
The MITRE Corporation
Open Source Software from the MITRE Corporation
The MITRE Corporation
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t

168 Dec 24, 2022
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023
Group-Free 3D Object Detection via Transformers

Group-Free 3D Object Detection via Transformers By Ze Liu, Zheng Zhang, Yue Cao, Han Hu, Xin Tong. This repo is the official implementation of "Group-

Ze Liu 213 Dec 07, 2022
Official implement of Paper:A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sening images

A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images 深度监督影像融合网络DSIFN用于高分辨率双时相遥感影像变化检测 Of

Chenxiao Zhang 135 Dec 19, 2022
tree-math: mathematical operations for JAX pytrees

tree-math: mathematical operations for JAX pytrees tree-math makes it easy to implement numerical algorithms that work on JAX pytrees, such as iterati

Google 137 Dec 28, 2022
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Hong-Jia Chen 127 Dec 23, 2022
Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding

Rot-Pro : Modeling Transitivity by Projection in Knowledge Graph Embedding This repository contains the source code for the Rot-Pro model, presented a

Tewi 9 Sep 28, 2022
Learning with Noisy Labels via Sparse Regularization, ICCV2021

Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari

Xiong Zhou 38 Oct 20, 2022
Semantic Edge Detection with Diverse Deep Supervision

Semantic Edge Detection with Diverse Deep Supervision This repository contains the code for our IJCV paper: "Semantic Edge Detection with Diverse Deep

Yun Liu 12 Dec 31, 2022
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
Scalable and Elastic Deep Reinforcement Learning Using PyTorch. Please star. 🔥

ElegantRL “小雅”: Scalable and Elastic Deep Reinforcement Learning ElegantRL is developed for researchers and practitioners with the following advantage

AI4Finance Foundation 2.5k Jan 05, 2023
Code for "Unsupervised State Representation Learning in Atari"

Unsupervised State Representation Learning in Atari Ankesh Anand*, Evan Racah*, Sherjil Ozair*, Yoshua Bengio, Marc-Alexandre Côté, R Devon Hjelm This

Mila 217 Jan 03, 2023
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
LIAO Shuiying 6 Dec 01, 2022
This GitHub repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.'

About Repository This repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.' About Code

Arun Verma 1 Nov 09, 2021
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022
JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces

JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces JAXMAPP is a JAX-based library for multi-agent path planning (MAPP) in c

OMRON SINIC X 24 Dec 28, 2022
A python package to perform same transformation to coco-annotation as performed on the image.

coco-transform-util A python package to perform same transformation to coco-annotation as performed on the image. Installation Way 1 $ git clone https

1 Jan 14, 2022
Learning Calibrated-Guidance for Object Detection in Aerial Images

Learning Calibrated-Guidance for Object Detection in Aerial Images arxiv We propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance

51 Sep 22, 2022
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023