(under submission) Bayesian Integration of a Generative Prior for Image Restoration

Overview

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration

Authors: Majed El Helou, and Sabine Süsstrunk

Python 3.7 pytorch 1.1.0 CUDA 10.1

{Note: paper under submission}

BIGPrior pipeline

The figure below illustrates the BIGPrior pipeline, with a generative-network inversion for the learned prior.

[Paper]

Abstract: Image restoration, such as denoising, inpainting, colorization, etc. encompasses fundamental image processing tasks that have been addressed with different algorithms and deep learning methods. Classical image restoration algorithms leverage a variety of priors, either implicitly or explicitly. Their priors are hand-designed and their corresponding weights are heuristically assigned. Thus, deep learning methods often produce superior image restoration quality. Deep networks are, however, capable of strong and hardly-predictable hallucinations of the data to be restored. Networks jointly and implicitly learn to be faithful to the observed data while learning an image prior, and the separation of original data and hallucinated data downstream is then not possible. This limits their wide-spread adoption in image restoration applications. Furthermore, it is often the hallucinated part that is victim to degradation-model overfitting.

We present an approach with decoupled network-prior based hallucination and data fidelity terms. We refer to our framework as the Bayesian Integration of a Generative Prior (BIGPrior). Our BIGPrior method is rooted in a Bayesian restoration framework, and tightly connected to classical restoration methods. In fact, our approach can be viewed as a generalization of a large family of classical restoration algorithms. We leverage a recent network inversion method to extract image prior information from a generative network. We show on image colorization, inpainting, and denoising that our framework consistently improves the prior results through good integration of data fidelity. Our method, though partly reliant on the quality of the generative network inversion, is competitive with state-of-the-art supervised and task-specific restoration methods. It also provides an additional metric that sets forth the degree of prior reliance per pixel. Indeed, the per pixel contributions of the decoupled data fidelity and prior terms are readily available in our proposed framework.

Key take-aways: our paper presents a learning-based restoration framework that forms a generalization of various families of classical methods. It is both tightly connected with Bayesian estimation upon which it builds, and also to classical dictionary methods. Our BIGPrior makes the explicit integration of learned-network priors possible, notably a generative-network prior. Its biggest advantage is that, by decoupling data fidelity and prior hallucination, it structurally provides a per pixel fusion metric that determines the contribution of each. This can be important both for end users and for various downstream applications. We hope this work will foster future learning methods with clearly decoupled network hallucinations, both for interpretability, reliability, and to safeguard against the hazards of black-box restoration.

Structure overview

All code is in the code directory, and input data are in the data folder. The net_data directory stores the network weights per epoch (along with many other trackers and all experiment parameters), it uses an automated index incrementation strategy on top of the experiment name for avoiding over-writing. We generate a lot of intermediate data for the different experiments, and along with the final outputs, these are written in inter_data.

Data setup

The needed data are already stored under data, if you want to repeat our experiments with different datasets we added a help README under data/lsun/ explaining how to pre-process the lsun data.

Generative inversion

The generative inversion we use is based on mGAN but we do some modifications to their code, which is why we have our own version in this repository.

(1) You need to download the pre-trained generative networks (we use PGGAN), and put the pretrain folder inside code/mganprior/models/. You can download them from the original repo, or mGAN's, or from our link right here.

(2) (recommended) You might face some bugs with the perceptual vgg-based loss due to caching, if you run parallel experiments or if you run on remote servers. We recommend you cache the pretrained model. To do this, first download vgg model vgg16-397923af.pth and paste it inside cache/torch/checkpoints/, then before starting an experiment run:

export XDG_CACHE_HOME=cache/

(3) We compiled the commands for all experiments in the bash file runall_mGAN.sh, you can find the templates inside to rerun each experiment.

Training

The train_cnn.sh bash compiles the commands to retrain all our experiments, for instance for colorization:

python code/train.py --experiment col_bedroom --lr 0.01 --batch_size 8 --backbone D --phi_weight 1e-5

the experiment name is parsed in 2 to determine the task and the dataset, the remaining args control the network or training parameters. All are detailed in code/train.py.

If you retrain multiple times for a given experiment, every run is saved with an incremented ID starting from 0, and the corresponding parameters are also saved as OURargs.txt next to the network checkpoints.

Testing

The test_cnn.sh bash compiles the commands to test all our experiments, for instance for colorization:

python code/train.py --experiment col_bedroom --test_model 1 --test True --test_epoch 24

where the test_model argument selects the ID of the already-trained experiment. The arguments of the chosen experiments are also saved under inter_data/{experiment}/OURoutput/OURargs.txt because, unlike network weights, the image outputs get over-written with every new run. This is because their computation is fast but they take a lot of storage.

Note: our pretrained models are already available within this repo under net_data (epoch 25 only, i.e. ID 24), so if you want to test without retraining it can be done directly.

Results visualization

We group all results processing, visualization, quantitative assessment, also including our correlation analysis figure, in one comprehensive notebook. It contains a large number of control parameters to obtain all the different table results, and more.

Citation

@article{elhelou2020bigprior,
    title   = {{BIGPrior}: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration},
    author  = {El Helou, Majed and S\"usstrunk, Sabine},
    journal = {arXiv preprint arXiv:2011.01406},
    year    = {2020}
}
Owner
Majed El Helou
CS PhD student, EPFL
Majed El Helou
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

gourabgggg 1 Nov 10, 2021
Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21'

Argument Extraction by Generation Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21' Dependencies pytorch=1.6 tr

Zoey Li 87 Dec 26, 2022
StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system

StableSims is an open-source project aimed at simulating MakerDAO's Dai stablecoin system, initially used for researching optimal incentive parameters for Liquidations 2.0.

Blockchain at Berkeley 52 Nov 21, 2022
Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)

NBFNet: Neural Bellman-Ford Networks This is the official codebase of the paper Neural Bellman-Ford Networks: A General Graph Neural Network Framework

MilaGraph 136 Dec 21, 2022
Normal Learning in Videos with Attention Prototype Network

Codes_APN Official codes of CVPR21 paper: Normal Learning in Videos with Attention Prototype Network (https://arxiv.org/abs/2108.11055) Overview of ou

11 Dec 13, 2022
A map update dataset and benchmark

MUNO21 MUNO21 is a dataset and benchmark for machine learning methods that automatically update and maintain digital street map datasets. Previous dat

16 Nov 30, 2022
“Robust Lightweight Facial Expression Recognition Network with Label Distribution Training”, AAAI 2021.

EfficientFace Zengqun Zhao, Qingshan Liu, Feng Zhou. "Robust Lightweight Facial Expression Recognition Network with Label Distribution Training". AAAI

Zengqun Zhao 119 Jan 08, 2023
The pytorch implementation of DG-Font: Deformable Generative Networks for Unsupervised Font Generation

DG-Font: Deformable Generative Networks for Unsupervised Font Generation The source code for 'DG-Font: Deformable Generative Networks for Unsupervised

130 Dec 05, 2022
This is our ARTS test set, an enriched test set to probe Aspect Robustness of ABSA.

This is the repository for our 2020 paper "Tasty Burgers, Soggy Fries: Probing Aspect Robustness in Aspect-Based Sentiment Analysis". Data We provide

35 Nov 16, 2022
Baseline powergrid model for NY

Baseline-powergrid-model-for-NY Table of Contents About The Project Built With Usage License Contact Acknowledgements About The Project As the urgency

Anderson Energy Lab at Cornell 6 Nov 24, 2022
Full Resolution Residual Networks for Semantic Image Segmentation

Full-Resolution Residual Networks (FRRN) This repository contains code to train and qualitatively evaluate Full-Resolution Residual Networks (FRRNs) a

Toby Pohlen 274 Oct 27, 2022
Tensorflow 2.x based implementation of EDSR, WDSR and SRGAN for single image super-resolution

Single Image Super-Resolution with EDSR, WDSR and SRGAN A Tensorflow 2.x based implementation of Enhanced Deep Residual Networks for Single Image Supe

Martin Krasser 1.3k Jan 06, 2023
Simple and Distributed Machine Learning

Synapse Machine Learning SynapseML (previously MMLSpark) is an open source library to simplify the creation of scalable machine learning pipelines. Sy

Microsoft 3.9k Dec 30, 2022
Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

GUO-W 38 Nov 15, 2022
The code repository for EMNLP 2021 paper "Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization".

Vision Guided Generative Pre-trained Language Models for Multimodal Abstractive Summarization [Paper] accepted at the EMNLP 2021: Vision Guided Genera

CAiRE 42 Jan 07, 2023
We are More than Our JOints: Predicting How 3D Bodies Move

We are More than Our JOints: Predicting How 3D Bodies Move Citation This repo contains the official implementation of our paper MOJO: @inproceedings{Z

72 Oct 20, 2022
Model Quantization Benchmark

Introduction MQBench is an open-source model quantization toolkit based on PyTorch fx. The envision of MQBench is to provide: SOTA Algorithms. With MQ

500 Jan 06, 2023
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022
Code release for "BoxeR: Box-Attention for 2D and 3D Transformers"

BoxeR By Duy-Kien Nguyen, Jihong Ju, Olaf Booij, Martin R. Oswald, Cees Snoek. This repository is an official implementation of the paper BoxeR: Box-A

Nguyen Duy Kien 111 Dec 07, 2022
Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The original code is written in keras.

CasRel-pytorch-reimplement Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The o

longlongman 170 Dec 01, 2022