A rule-based log analyzer & filter

Overview

Flog

一个根据规则集来处理文本日志的工具。

前言

在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。

日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。

以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决定写这个工具,根据规则自动分析日志、剔除垃圾信息。

使用方法

安装

python setup.py install

基础用法

flog -r rules.yaml /path/to/1.log /path/to/2.log /path/to/3.log -o /path/to/filtered.log

其中:

  • rules.yaml是规则文件
  • /path/to/x.log是原始的日志文件,支持一次输入多个日志文件。
  • /path/to/filtered.log是过滤后的日志文件,如果不指定文件名(直接一个-o),会自动生成一个。

如果不需要过滤日志内容,只需显示分析结果,可以直接:

flog -r rules.yaml /path/to/your.log

规则语法

基础

name: Rule Name #规则集名称
patterns: #规则列表
  # 单行模式,如果匹配到 ^Hello,就输出 Match Hello
  - match: "^Hello"
    message: "Match Hello"
    action: bypass #保留此条日志(会输出到-o指定的文件中)
    
  # 多行模式,以^Hello开头,以^End结束,输出 Match Hello to End,并丢弃此条日志
  - start: "^Hello"
    end: "^End"
    message: "Match Hello to End"
    action: drop

  - start: "Start"
    start_message: "Match Start" #匹配开始时显示的信息
    end: "End"
    end_messagee: "Match End" #结束时显示的信息

纯过滤模式

name: Rule Name
patterns:
  - match: "^Hello" #删除日志中以Hello开头的行
  - start: "^Hello" #多行模式,删除从Hello到End中间的所有内容
    end: "^End"

过滤日志内容,并输出信息

name: Rule Name
patterns:
  - match: "^Hello" #删除日志中以Hello开头的行
    message: "Match Hello"
    action: drop #删除此行日志

规则嵌套

仅多行模式支持规则嵌套。

name: Rule
patterns:
  - start: "^Response.*{$"
    end: "^}"
    patterns:
      - match: "username = (.*)"
        message: "Current user: {{ capture[0] }}"

输入:

Login Response {
  username = zorro
  userid = 123456
}

输出:

Current user: zorro

action

action字段主要用于控制是否过滤此条日志,仅在指定 -o 参数后生效。 取值范围:【dropbypass】。

为了简化纯过滤类型规则的书写,action默认值的规则如下:

  • 如果规则中包含messagestart_messageend_message字段,action默认为bypass,即输出到文件中。
  • 如果规则中不包含message相关字段,action默认为drop,变成一条纯过滤规则。

message

message 字段用于在标准输出显示信息,并且支持 Jinja 模版语法来自定义输出信息内容,通过它可以实现一些简单的日志分析功能。

目前支持的参数有:

  • lines: (多行模式下)匹配到的所有行
  • content: 匹配到的日志内容
  • captures: 正则表达式(match/start/end)捕获的内容

例如:

name: Rule Name
patterns:
  - match: "^Hello (.*)"
    message: "Match {{captures[0]}}"

如果遇到:"Hello lilei",则会在终端输出"Match lilei"

context

可以把日志中频繁出现的正则提炼出来,放到context字段下,避免复制粘贴多次,例如:

name: Rule Name

context:
  timestamp: "\\d{4}-\\d{2}-\\d{2} \\d{2}:\\d{2}:\\d{2}.\\d{3}"
patterns:
  - match: "hello ([^:]*):"
    message: "{{ timestamp }} - {{ captures[0] }}"

输入:2022-04-08 16:52:37.152 hello world: this is a test message
输出:2022-04-08 16:52:37.152 - world

高亮

内置了一些 Jinjafilter,可以在终端高亮输出结果,目前包含:

black, red, green, yellow, blue, purple, cyan, white, bold, light, italic, underline, blink, reverse, strike

例如:

patterns:
  - match: "Error: (.*)"
    message: "{{ captures[0] | red }}"

输入:Error: file not found
输出:file not found

include

支持引入其它规则文件,例如:

name: Rule
include: base #引入同级目录下的 base.yaml 或 base.yml

include支持引入一个或多个文件,例如:

name: Rule
include:
  - base
  - ../base
  - base.yaml
  - base/base1
  - base/base2.yaml
  - ../base.yaml
  - /usr/etc/rules/base.yml

contextpatterns会按照引用顺序依次合并,如果有同名的context,后面的会替换之前的。

License

MIT

Owner
上山打老虎
专业造工具
上山打老虎
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022
Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation [paper] [video-YouTube, video-Bilibili] [slides] This is

Sea AI Lab 251 Dec 30, 2022
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
Air Quality Prediction Using LSTM

AirQualityPredictionUsingLSTM In this Repo, i present to you the winning solution of smart gujarat hackathon 2019 where the task was to predict the qu

Deepak Nandwani 2 Dec 13, 2022
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

77 Dec 16, 2022
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023
Public Models considered for emotion estimation from EEG

Emotion-EEG Set of models for emotion estimation from EEG. Composed by the combination of two deep-learing models learning together (RNN and CNN) with

Victor Delvigne 21 Dec 23, 2022
scAR (single-cell Ambient Remover) is a package for data denoising in single-cell omics.

scAR scAR (single cell Ambient Remover) is a package for denoising multiple single cell omics data. It can be used for multiple tasks, such as, sgRNA

19 Nov 28, 2022
Image Restoration Using Swin Transformer for VapourSynth

SwinIR SwinIR function for VapourSynth, based on https://github.com/JingyunLiang/SwinIR. Dependencies NumPy PyTorch, preferably with CUDA. Note that t

Holy Wu 11 Jun 19, 2022
Doing the asl sign language classification on static images using graph neural networks.

SignLangGNN When GNNs 💜 MediaPipe. This is a starter project where I tried to implement some traditional image classification problem i.e. the ASL si

10 Nov 09, 2022
The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

Representative Batch Normalization (RBN) with Feature Calibration The official implementation of the CVPR2021 oral paper: Representative Batch Normali

Open source projects of ShangHua-Gao 76 Nov 09, 2022
GrabGpu_py: a scripts for grab gpu when gpu is free

GrabGpu_py a scripts for grab gpu when gpu is free. WaitCondition: gpu_memory

tianyuluan 3 Jun 18, 2022
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

Alipay 6 Dec 17, 2022
Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization This is the official PyTorch implementation for the HAM method. Pap

Xi Ouyang 22 Jan 02, 2023
ICSS - Interactive Continual Semantic Segmentation

Presentation This repository contains the code of our paper: Weakly-supervised c

Alteia 9 Jul 23, 2022
RoMa: A lightweight library to deal with 3D rotations in PyTorch.

RoMa: A lightweight library to deal with 3D rotations in PyTorch. RoMa (which stands for Rotation Manipulation) provides differentiable mappings betwe

NAVER 90 Dec 27, 2022
Table-Extractor 表格抽取

(t)able-(ex)tractor 本项目旨在实现pdf表格抽取。 Models 版面分析模块(Yolo) 表格结构抽取(ResNet + Transformer) 文字识别模块(CRNN + CTC Loss) Acknowledgements TableMaster attention-i

2 Jan 15, 2022
PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.

MoCo v3 for Self-supervised ResNet and ViT Introduction This is a PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT. The original M

Facebook Research 887 Jan 08, 2023
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
Supervised domain-agnostic prediction framework for probabilistic modelling

A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data

The Alan Turing Institute 112 Oct 23, 2022