Direct Multi-view Multi-person 3D Human Pose Estimation

Related tags

Deep Learningmvp
Overview

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation

[paper] [video-YouTube, video-Bilibili] [slides]

This is the official implementation of our NeurIPS-2021 work: Multi-view Pose Transformer (MvP). MvP is a simple algorithm that directly regresses multi-person 3D human pose from multi-view images.

Framework

mvp_framework

Example Result

mvp_framework

Reference

@article{wang2021mvp,
  title={Direct Multi-view Multi-person 3D Human Pose Estimation},
  author={Tao Wang and Jianfeng Zhang and Yujun Cai and Shuicheng Yan and Jiashi Feng},
  journal={Advances in Neural Information Processing Systems},
  year={2021}
}

1. Installation

  1. Set the project root directory as ${POSE_ROOT}.
  2. Install all the required python packages (with requirements.txt).
  3. compile deformable operation for projective attention.
cd ./models/ops
sh ./make.sh

2. Data and Pre-trained Model Preparation

2.1 CMU Panoptic

Please follow VoxelPose to download the CMU Panoptic Dataset and PoseResNet-50 pre-trained model.

The directory tree should look like this:

${POSE_ROOT}
|-- models
|   |-- pose_resnet50_panoptic.pth.tar
|-- data
|   |-- panoptic
|   |   |-- 16060224_haggling1
|   |   |   |-- hdImgs
|   |   |   |-- hdvideos
|   |   |   |-- hdPose3d_stage1_coco19
|   |   |   |-- calibration_160224_haggling1.json
|   |   |-- 160226_haggling1
|   |   |-- ...

2.2 Shelf/Campus

Please follow VoxelPose to download the Shelf/Campus Dataset.

Due to the limited and incomplete annotations of the two datasets, we use psudo ground truth 3D pose generated from VoxelPose to train the model, we expect mvp would perform much better with absolute ground truth pose data.

Please use voxelpose or other methods to generate psudo ground truth for the training set, you can also use our generated psudo GT: psudo_gt_shelf. psudo_gt_campus. psudo_gt_campus_fix_gtmorethanpred.

Due to the small dataset size, we fine-tune Panoptic pre-trained model to Shelf and Campus. Download the pretrained MvP on Panoptic from model_best_5view and model_best_3view_horizontal_view or model_best_3view_2horizon_1lookdown

The directory tree should look like this:

${POSE_ROOT}
|-- models
|   |-- model_best_5view.pth.tar
|   |-- model_best_3view_horizontal_view.pth.tar
|   |-- model_best_3view_2horizon_1lookdown.pth.tar
|-- data
|   |-- Shelf
|   |   |-- Camera0
|   |   |-- ...
|   |   |-- Camera4
|   |   |-- actorsGT.mat
|   |   |-- calibration_shelf.json
|   |   |-- pesudo_gt
|   |   |   |-- voxelpose_pesudo_gt_shelf.pickle
|   |-- CampusSeq1
|   |   |-- Camera0
|   |   |-- Camera1
|   |   |-- Camera2
|   |   |-- actorsGT.mat
|   |   |-- calibration_campus.json
|   |   |-- pesudo_gt
|   |   |   |-- voxelpose_pesudo_gt_campus.pickle
|   |   |   |-- voxelpose_pesudo_gt_campus_fix_gtmorethanpred_case.pickle

2.3 Human3.6M dataset

Please follow CHUNYUWANG/H36M-Toolbox to prepare the data.

2.4 Full Directory Tree

The data and pre-trained model directory tree should look like this, you can only download the Panoptic dataset and PoseResNet-50 for reproducing the main MvP result and ablation studies:

${POSE_ROOT}
|-- models
|   |-- pose_resnet50_panoptic.pth.tar
|   |-- model_best_5view.pth.tar
|   |-- model_best_3view_horizontal_view.pth.tar
|   |-- model_best_3view_2horizon_1lookdown.pth.tar
|-- data
|   |-- pesudo_gt
|   |   |-- voxelpose_pesudo_gt_shelf.pickle
|   |   |-- voxelpose_pesudo_gt_campus.pickle
|   |   |-- voxelpose_pesudo_gt_campus_fix_gtmorethanpred_case.pickle
|   |-- panoptic
|   |   |-- 16060224_haggling1
|   |   |   |-- hdImgs
|   |   |   |-- hdvideos
|   |   |   |-- hdPose3d_stage1_coco19
|   |   |   |-- calibration_160224_haggling1.json
|   |   |-- 160226_haggling1
|   |   |-- ...
|   |-- Shelf
|   |   |-- Camera0
|   |   |-- ...
|   |   |-- Camera4
|   |   |-- actorsGT.mat
|   |   |-- calibration_shelf.json
|   |   |-- pesudo_gt
|   |   |   |-- voxelpose_pesudo_gt_shelf.pickle
|   |-- CampusSeq1
|   |   |-- Camera0
|   |   |-- Camera1
|   |   |-- Camera2
|   |   |-- actorsGT.mat
|   |   |-- calibration_campus.json
|   |   |-- pesudo_gt
|   |   |   |-- voxelpose_pesudo_gt_campus.pickle
|   |   |   |-- voxelpose_pesudo_gt_campus_fix_gtmorethanpred_case.pickle
|   |-- HM36

3. Training and Evaluation

The evaluation result will be printed after every epoch, the best result can be found in the log.

3.1 CMU Panoptic dataset

We train and validate on the five selected camera views. We trained our models on 8 GPUs and batch_size=1 for each GPU, note the total iteration per epoch should be 3205, if not, please check your data.

python -m torch.distributed.launch --nproc_per_node=8 --use_env run/train_3d.py --cfg configs/panoptic/best_model_config.yaml

Pre-trained models

Datasets AP25 AP25 AP25 AP25 MPJPE pth
Panoptic 92.3 96.6 97.5 97.7 15.8 here

3.1.1 Ablation Experiments

You can find several ablation experiment configs under ./configs/panoptic/, for example, removing RayConv:

python -m torch.distributed.launch --nproc_per_node=8 --use_env run/train_3d.py --cfg configs/panoptic/ablation_remove_rayconv.yaml

3.2 Shelf/Campus datasets

As shelf/campus are very small dataset with incomplete annotation, we finetune pretrained MvP with pseudo ground truth 3D pose extracted with VoxelPose, we expect more accurate GT would help MvP achieve much higher performance.

python -m torch.distributed.launch --nproc_per_node=8 --use_env run/train_3d.py --cfg configs/shelf/mvp_shelf.yaml

Pre-trained models

Datasets Actor 1 Actor 2 Actor 2 Average pth
Shelf 99.3 95.1 97.8 97.4 here
Campus 98.2 94.1 97.4 96.6 here

3.3 Human3.6M dataset

MvP also applies to the naive single-person setting, with dataset like Human3.6, to come

python -m torch.distributed.launch --nproc_per_node=8 --use_env run/train_3d.py --cfg configs/h36m/mvp_h36m.yaml

4. Evaluation Only

To evaluate a trained model, pass the config and model pth:

python -m torch.distributed.launch --nproc_per_node=8 --use_env run/validate_3d.py --cfg xxx --model_path xxx

LICENSE

This repo is under the Apache-2.0 license. For commercial use, please contact the authors.

Owner
Sea AI Lab
Sea AI Lab
Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification

DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification Official Implementation for the pape

Anh M. Nguyen 36 Dec 28, 2022
HINet: Half Instance Normalization Network for Image Restoration

HINet: Half Instance Normalization Network for Image Restoration Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen Paper: https://arxiv.org

303 Dec 31, 2022
TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

52 Dec 23, 2022
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train

Jongheon Jeong 174 Dec 29, 2022
CVPR2022 paper "Dense Learning based Semi-Supervised Object Detection"

[CVPR2022] DSL: Dense Learning based Semi-Supervised Object Detection DSL is the first work on Anchor-Free detector for Semi-Supervised Object Detecti

Bhchen 69 Dec 08, 2022
Exploration-Exploitation Dilemma Solving Methods

Exploration-Exploitation Dilemma Solving Methods Medium article for this repo - HERE In ths repo I implemented two techniques for tackling mentioned t

Aman Mishra 6 Jan 25, 2022
this is a lite easy to use virtual keyboard project for anyone to use

virtual_Keyboard this is a lite easy to use virtual keyboard project for anyone to use motivation I made this for this year's recruitment for RobEn AA

Mohamed Emad 3 Oct 23, 2021
Cookiecutter PyTorch Lightning

Cookiecutter PyTorch Lightning Instructions # install cookiecutter pip install cookiecutter

Mazen 8 Nov 06, 2022
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211

Fuhang 5 Jan 18, 2022
[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdhury, Yongxin Yan

Ayan Kumar Bhunia 44 Dec 12, 2022
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
This repository contains the scripts for downloading and validating scripts for the documents

HC4: HLTCOE CLIR Common-Crawl Collection This repository contains the scripts for downloading and validating scripts for the documents. Document ids,

JHU Human Language Technology Center of Excellence 6 Jun 07, 2022
This is the official implementation of TrivialAugment and a mini-library for the application of multiple image augmentation strategies including RandAugment and TrivialAugment.

Trivial Augment This is the official implementation of TrivialAugment (https://arxiv.org/abs/2103.10158), as was used for the paper. TrivialAugment is

AutoML-Freiburg-Hannover 94 Dec 30, 2022
A GPT, made only of MLPs, in Jax

MLP GPT - Jax (wip) A GPT, made only of MLPs, in Jax. The specific MLP to be used are gMLPs with the Spatial Gating Units. Working Pytorch implementat

Phil Wang 53 Sep 27, 2022
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

A rough implementation of the paper "A Steering Algorithm for Redirected Walking Using Reinforcement Learning"

Somnus `Chen 2 Jun 09, 2022
You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

Huiyiqianli 42 Dec 06, 2022
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
[CVPR'21 Oral] Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning

Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning [CVPR'21, Oral] By Zhicheng Huang*, Zhaoyang Zeng*, Yupan H

Multimedia Research 196 Dec 13, 2022
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023