A playable implementation of Fully Convolutional Networks with Keras.

Overview

keras-fcn

Build Status codecov License: MIT

A re-implementation of Fully Convolutional Networks with Keras

Installation

Dependencies

  1. keras
  2. tensorflow

Install with pip

$ pip install git+https://github.com/JihongJu/keras-fcn.git

Build from source

$ git clone https://github.com/JihongJu/keras-fcn.git
$ cd keras-fcn
$ pip install --editable .

Usage

FCN with VGG16

from keras_fcn import FCN
fcn_vgg16 = FCN(input_shape=(500, 500, 3), classes=21,  
                weights='imagenet', trainable_encoder=True)
fcn_vgg16.compile(optimizer='rmsprop',
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])
fcn_vgg16.fit(X_train, y_train, batch_size=1)

FCN with VGG19

from keras_fcn import FCN
fcn_vgg19 = FCN_VGG19(input_shape=(500, 500, 3), classes=21,  
                      weights='imagenet', trainable_encoder=True)
fcn_vgg19.compile(optimizer='rmsprop',
                  loss='categorical_crossentropy',
                  metrics=['accuracy'])
fcn_vgg19.fit(X_train, y_train, batch_size=1)

Custom FCN (VGG16 as an example)

from keras.layers import Input
from keras.models import Model
from keras_fcn.encoders import Encoder
from keras_fcn.decoders import VGGUpsampler
from keras_fcn.blocks import (vgg_conv, vgg_fc)
inputs = Input(shape=(224, 224, 3))
blocks = [vgg_conv(64, 2, 'block1'),
          vgg_conv(128, 2, 'block2'),
          vgg_conv(256, 3, 'block3'),
          vgg_conv(512, 3, 'block4'),
          vgg_conv(512, 3, 'block5'),
          vgg_fc(4096)]
encoder = Encoder(inputs, blocks, weights='imagenet',
                  trainable=True)
feat_pyramid = encoder.outputs   # A feature pyramid with 5 scales
feat_pyramid = feat_pyramid[:3]  # Select only the top three scale of the pyramid
feat_pyramid.append(inputs)      # Add image to the bottom of the pyramid


outputs = VGGUpsampler(feat_pyramid, scales=[1, 1e-2, 1e-4], classes=21)
outputs = Activation('softmax')(outputs)

fcn_custom = Model(inputs=inputs, outputs=outputs)

And implement a custom Fully Convolutional Network becomes simply define a series of convolutional blocks that one stacks on top of another.

Custom decoders

from keras_fcn.blocks import vgg_upsampling
from keras_fcn.decoders import Decoder
decode_blocks = [
vgg_upsampling(classes=21, target_shape=(None, 14, 14, None), scale=1),            
vgg_upsampling(classes=21, target_shape=(None, 28, 28, None),  scale=0.01),
vgg_upsampling(classes=21, target_shape=(None, 224, 224, None),  scale=0.0001)
]
outputs = Decoder(feat_pyramid[-1], decode_blocks)

The decode_blocks can be customized as well.

from keras_fcn.layers import BilinearUpSampling2D

def vgg_upsampling(classes, target_shape=None, scale=1, block_name='featx'):
    """A VGG convolutional block with bilinear upsampling for decoding.

    :param classes: Integer, number of classes
    :param scale: Float, scale factor to the input feature, varing from 0 to 1
    :param target_shape: 4D Tuples with targe_height, target_width as
    the 2nd, 3rd elements if `channels_last` or as the 3rd, 4th elements if
    `channels_first`.

    >>> from keras_fcn.blocks import vgg_upsampling
    >>> feat1, feat2, feat3 = feat_pyramid[:3]
    >>> y = vgg_upsampling(classes=21, target_shape=(None, 14, 14, None),
    >>>                    scale=1, block_name='feat1')(feat1, None)
    >>> y = vgg_upsampling(classes=21, target_shape=(None, 28, 28, None),
    >>>                    scale=1e-2, block_name='feat2')(feat2, y)
    >>> y = vgg_upsampling(classes=21, target_shape=(None, 224, 224, None),
    >>>                    scale=1e-4, block_name='feat3')(feat3, y)

    """
    def f(x, y):
        score = Conv2D(filters=classes, kernel_size=(1, 1),
                       activation='linear',
                       padding='valid',
                       kernel_initializer='he_normal',
                       name='score_{}'.format(block_name))(x)
        if y is not None:
            def scaling(xx, ss=1):
                return xx * ss
            scaled = Lambda(scaling, arguments={'ss': scale},
                            name='scale_{}'.format(block_name))(score)
            score = add([y, scaled])
        upscore = BilinearUpSampling2D(
            target_shape=target_shape,
            name='upscore_{}'.format(block_name))(score)
        return upscore
    return f

Try Examples

  1. Download VOC2011 dataset
$ wget "http://host.robots.ox.ac.uk/pascal/VOC/voc2011/VOCtrainval_25-May-2011.tar"
$ tar -xvzf VOCtrainval_25-May-2011.tar
$ mkdir ~/Datasets
$ mv TrainVal/VOCdevkit/VOC2011 ~/Datasets
  1. Mount dataset from host to container and start bash in container image

From repository keras-fcn

$ nvidia-docker run -it --rm -v `pwd`:/root/workspace -v ${Home}/Datasets/:/root/workspace/data jihong/keras-gpu bash

or equivalently,

$ make bash
  1. Within the container, run the following codes.
$ cd ~/workspace
$ pip setup.py -e .
$ cd voc2011
$ python train.py

More details see source code of the example in Training Pascal VOC2011 Segmention

Model Architecture

FCN8s with VGG16 as base net:

fcn_vgg16

TODO

  • Add ResNet
Owner
JihongJu
🤓
JihongJu
Charsiu: A transformer-based phonetic aligner

Charsiu: A transformer-based phonetic aligner [arXiv] Note. This is a preview version. The aligner is under active development. New functions, new lan

jzhu 166 Dec 09, 2022
This repository contains a Ruby API for utilizing TensorFlow.

tensorflow.rb Description This repository contains a Ruby API for utilizing TensorFlow. Linux CPU Linux GPU PIP Mac OS CPU Not Configured Not Configur

somatic labs 825 Dec 26, 2022
PPO Lagrangian in JAX

PPO Lagrangian in JAX This repository implements PPO in JAX. Implementation is tested on the safety-gym benchmark. Usage Install dependencies using th

Karush Suri 2 Sep 14, 2022
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

CodingMan 45 Dec 12, 2022
A public available dataset for road boundary detection in aerial images

Topo-boundary This is the official github repo of paper Topo-boundary: A Benchmark Dataset on Topological Road-boundary Detection Using Aerial Images

Zhenhua Xu 79 Jan 04, 2023
Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python THIS PROJECT IS CURRENTLY A WORK IN PROGRESS AND THUS THIS REPOSITORY I

Joshua Marshall 14 Dec 31, 2022
Transformer part of 12th place solution in Riiid! Answer Correctness Prediction

kaggle_riiid Transformer part of 12th place solution in Riiid! Answer Correctness Prediction. Please see here for more information. Execution You need

Sakami Kosuke 2 Apr 23, 2022
NeuralDiff: Segmenting 3D objects that move in egocentric videos

NeuralDiff: Segmenting 3D objects that move in egocentric videos Project Page | Paper + Supplementary | Video About This repository contains the offic

Vadim Tschernezki 14 Dec 05, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
A cool little repl-based simulation written in Python

A cool little repl-based simulation written in Python planned to integrate machine-learning into itself to have AI battle to the death before your eye

Em 6 Sep 17, 2022
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022
Lightweight tool to perform MITM attack on local network

ARPSpy - A lightweight tool to perform MITM attack Using many library to perform ARP Spoof and auto-sniffing HTTP packet containing credential. (Never

MinhItachi 8 Aug 28, 2022
A setup script to generate ITK Python Wheels

ITK Python Package This project provides a setup.py script to build ITK Python binary packages and infrastructure to build ITK external module Python

Insight Software Consortium 59 Dec 14, 2022
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learning.

This is the Vowpal Wabbit fast online learning code. Why Vowpal Wabbit? Vowpal Wabbit is a machine learning system which pushes the frontier of machin

Vowpal Wabbit 8.1k Jan 06, 2023
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

256 Dec 28, 2022
DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing

DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing Figure: Joint multi-attribute edits using DyStyle model. Great diversity

74 Dec 03, 2022
Neural Contours: Learning to Draw Lines from 3D Shapes (CVPR2020)

Neural Contours: Learning to Draw Lines from 3D Shapes This repository contains the PyTorch implementation for CVPR 2020 Paper "Neural Contours: Learn

93 Dec 16, 2022
Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Apple 3k Jan 08, 2023