NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.

Overview

#NeuralTalk

Warning: Deprecated. Hi there, this code is now quite old and inefficient, and now deprecated. I am leaving it on Github for educational purposes, but if you would like to run or train image captioning I warmly recommend my new code release NeuralTalk2. NeuralTalk2 is written in Torch and is SIGNIFICANTLY (I mean, ~100x+) faster because it is batched and runs on the GPU. It also supports CNN finetuning, which helps a lot with performance.

This project contains Python+numpy source code for learning Multimodal Recurrent Neural Networks that describe images with sentences.

This line of work was recently featured in a New York Times article and has been the subject of multiple academic papers from the research community over the last few months. This code currently implements the models proposed by Vinyals et al. from Google (CNN + LSTM) and by Karpathy and Fei-Fei from Stanford (CNN + RNN). Both models take an image and predict its sentence description with a Recurrent Neural Network (either an LSTM or an RNN).

Overview

The pipeline for the project looks as follows:

  • The input is a dataset of images and 5 sentence descriptions that were collected with Amazon Mechanical Turk. In particular, this code base is set up for Flickr8K, Flickr30K, and MSCOCO datasets.
  • In the training stage, the images are fed as input to RNN and the RNN is asked to predict the words of the sentence, conditioned on the current word and previous context as mediated by the hidden layers of the neural network. In this stage, the parameters of the networks are trained with backpropagation.
  • In the prediction stage, a witheld set of images is passed to RNN and the RNN generates the sentence one word at a time. The results are evaluated with BLEU score. The code also includes utilities for visualizing the results in HTML.

Dependencies

Python 2.7, modern version of numpy/scipy, perl (if you want to do BLEU score evaluation), argparse module. Most of these are okay to install with pip. To install all dependencies at once, run the command pip install -r requirements.txt

I only tested this code with Ubuntu 12.04, but I tried to make it as generic as possible (e.g. use of os module for file system interactions etc. So it might work on Windows and Mac relatively easily.)

Protip: you really want to link your numpy to use a BLAS implementation for its matrix operations. I use virtualenv and link numpy against a system installation of OpenBLAS. Doing this will make this code almost an order of time faster because it relies very heavily on large matrix multiplies.

Getting started

  1. Get the code. $ git clone the repo and install the Python dependencies
  2. Get the data. I don't distribute the data in the Git repo, instead download the data/ folder from here. Also, this download does not include the raw image files, so if you want to visualize the annotations on raw images, you have to obtain the images from Flickr8K / Flickr30K / COCO directly and dump them into the appropriate data folder.
  3. Train the model. Run the training $ python driver.py (see many additional argument settings inside the file) and wait. You'll see that the learning code writes checkpoints into cv/ and periodically reports its status in status/ folder.
  4. Monitor the training. The status can be inspected manually by reading the JSON and printing whatever you wish in a second process. In practice I run cross-validations on a cluster, so my cv/ folder fills up with a lot of checkpoints that I further filter and inspect with other scripts. I am including my cluster training status visualization utility as well if you like. Run a local webserver (e.g. $ python -m SimpleHTTPServer 8123) and then open monitorcv.html in your browser on http://localhost:8123/monitorcv.html, or whatever the web server tells you the path is. You will have to edit the file to setup the paths properly and point it at the right json files.
  5. Evaluate model checkpoints. To evaluate a checkpoint from cv/, run the evaluate_sentence_predctions.py script and pass it the path to a checkpoint.
  6. Visualize the predictions. Use the included html file visualize_result_struct.html to visualize the JSON struct produced by the evaluation code. This will visualize the images and their predictions. Note that you'll have to download the raw images from the individual dataset pages and place them into the corresponding data/ folder.

Lastly, note that this is currently research code, so a lot of the documentation is inside individual Python files. If you wish to work with this code, you'll have to get familiar with it and be comfortable reading Python code.

Pretrained model

Some pretrained models can be found in the NeuralTalk Model Zoo. The slightly hairy part is that if you wish to apply these models to some arbitrary new image (one not from Flickr8k/30k/COCO) you have to first extract the CNN features. I use the 16-layer VGG network from Simonyan and Zisserman, because the model is beautiful, powerful and available with Caffe. There is opportunity for putting the preprocessing and inference into a single nice function that uses the Python wrapper to get the features and then runs the pretrained sentence model. I might add this in the future.

Using the model to predict on new images

The code allows you to easily predict and visualize results of running the model on COCO/Flickr8K/Flick30K images. If you want to run the code on arbitrary image (e.g. on your file system), things get a little more complicated because we need to first need to pipe your image through the VGG CNN to get the 4096-D activations on top.

Have a look inside the folder example_images for instructions on how to do this. Currently, the code for extracting the raw features from each image is in Matlab, so you will need it installed on your system. Caffe also has a wrapper for Python, but I wasn't yet able to use the Python wrapper to exactly reproduce the features I get from Matlab. The example_images will walk you through the process, and you will eventually use predict_on_images.py to run the prediction.

Using your own data

The input to the system is the data folder, which contains the Flickr8K, Flickr30K and MSCOCO datasets. In particular, each folder (e.g. data/flickr8k) contains a dataset.json file that stores the image paths and sentences in the dataset (all images, sentences, raw preprocessed tokens, splits, and the mappings between images and sentences). Each folder additionally contains vgg_feats.mat , which is a .mat file that stores the CNN features from all images, one per row, using the VGG Net from ILSVRC 2014. Finally, there is the imgs/ folder that holds the raw images. I also provide the Matlab script that I used to extract the features, which you may find helpful if you wish to use a different dataset. This is inside the matlab_features_reference/ folder, and see the Readme file in that folder for more information.

License

BSD license.

Owner
Andrej
I like to train Deep Neural Nets on large datasets.
Andrej
💡 Learnergy is a Python library for energy-based machine learning models.

Learnergy: Energy-based Machine Learners Welcome to Learnergy. Did you ever reach a bottleneck in your computational experiments? Are you tired of imp

Gustavo Rosa 57 Nov 17, 2022
deep learning for image processing including classification and object-detection etc.

深度学习在图像处理中的应用教程 前言 本教程是对本人研究生期间的研究内容进行整理总结,总结的同时也希望能够帮助更多的小伙伴。后期如果有学习到新的知识也会与大家一起分享。 本教程会以视频的方式进行分享,教学流程如下: 1)介绍网络的结构与创新点 2)使用Pytorch进行网络的搭建与训练 3)使用Te

WuZhe 13.6k Jan 04, 2023
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized

Filippo Bianchi 249 Dec 21, 2022
验证码识别 深度学习 tensorflow 神经网络

captcha_tf2 验证码识别 深度学习 tensorflow 神经网络 使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上 目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。 实例demo 训练过程 优化器选择: Adam

5 Apr 28, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
Video Autoencoder: self-supervised disentanglement of 3D structure and motion

Video Autoencoder: self-supervised disentanglement of 3D structure and motion This repository contains the code (in PyTorch) for the model introduced

157 Dec 22, 2022
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivariant Continuous Convolution

Trajectory Prediction using Equivariant Continuous Convolution (ECCO) This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivar

Spatiotemporal Machine Learning 45 Jul 22, 2022
It's final year project of Diploma Engineering. This project is based on Computer Vision.

Face-Recognition-Based-Attendance-System It's final year project of Diploma Engineering. This project is based on Computer Vision. Brief idea about ou

Neel 10 Nov 02, 2022
Research code of ICCV 2021 paper "Mesh Graphormer"

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
Implementation of the paper Recurrent Glimpse-based Decoder for Detection with Transformer.

REGO-Deformable DETR By Zhe Chen, Jing Zhang, and Dacheng Tao. This repository is the implementation of the paper Recurrent Glimpse-based Decoder for

Zhe Chen 33 Nov 30, 2022
A PyTorch implementation for V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation

A PyTorch implementation of V-Net Vnet is a PyTorch implementation of the paper V-Net: Fully Convolutional Neural Networks for Volumetric Medical Imag

Matthew Macy 606 Dec 21, 2022
A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains (IJCV submission)

wsss-analysis The code of: A Comprehensive Analysis of Weakly-Supervised Semantic Segmentation in Different Image Domains, arXiv pre-print 2019 paper.

Lyndon Chan 48 Dec 18, 2022
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
Empowering journalists and whistleblowers

Onymochat Empowering journalists and whistleblowers Onymochat is an end-to-end encrypted, decentralized, anonymous chat application. You can also host

Samrat Dutta 19 Sep 02, 2022
Hough Transform and Hough Line Transform Using OpenCV

Hough transform is a feature extraction method for detecting simple shapes such as circles, lines, etc in an image. Hough Transform and Hough Line Transform is implemented in OpenCV with two methods;

Happy N. Monday 3 Feb 15, 2022
Automatically erase objects in the video, such as logo, text, etc.

Video-Auto-Wipe Read English Introduction:Here   本人不定期的基于生成技术制作一些好玩有趣的算法模型,这次带来的作品是“视频擦除”方向的应用模型,它实现的功能是自动感知到视频中我们不想看见的部分(譬如广告、水印、字幕、图标等等)然后进行擦除。由于图标擦

seeprettyface.com 141 Dec 26, 2022
The code for paper Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation Algorithm

Quantum Qubit Rotation Algorithm Single qubit rotation gates $$ U(\Theta)=\bigotimes_{i=1}^n R_x (\phi_i) $$ QQRA for the max-cut problem This code wa

SheffieldWang 0 Oct 18, 2021
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intenti

NVIDIA Corporation 6.9k Jan 03, 2023
Project code for weakly supervised 3D object detectors using wide-baseline multi-view traffic camera data: WIBAM.

WIBAM (Work in progress) Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data 3D object dete

Matthew Howe 10 Aug 24, 2022