Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

Overview

Path-Generator-QA

This is a Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering [arxiv][project page]

Code folders:

(1) learning-generator: conduct path sampling and then train the path generator.

(2) commonse-qa: use the generator to generate paths and then train the qa system on task dataset.

(3) A-Commonsense-Path-Generator-for-Connecting-Entities.ipynb: The notebook illustrating how to use our proposed generator to connect a pair of entities with a commonsense relational path.

Part of this code and instruction rely on our another project [code][arxiv]. Please cite both of our works if you use this code. Thanks!

@article{wang2020connecting,
  title={Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering},
  author={Wang, Peifeng and Peng, Nanyun and Szekely, Pedro and Ren, Xiang},
  journal={arXiv preprint arXiv:2005.00691},
  year={2020}
}

@article{feng2020scalable,
  title={Scalable Multi-Hop Relational Reasoning for Knowledge-Aware Question Answering},
  author={Feng, Yanlin and Chen, Xinyue and Lin, Bill Yuchen and Wang, Peifeng and Yan, Jun and Ren, Xiang},
  journal={arXiv preprint arXiv:2005.00646},
  year={2020}
}

Dependencies

  • Python >= 3.6
  • PyTorch == 1.1
  • transformers == 2.8.0
  • dgl == 0.3 (GPU version)
  • networkx == 2.3

Run the following commands to create a conda environment:

conda create -n pgqa python=3.6
source activate pgqa
conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
pip install dgl-cu100
pip install transformers==2.8.0 tqdm networkx==2.3 nltk spacy==2.1.6
python -m spacy download en

For training a path generator

cd learning-generator
cd data
unzip conceptnet.zip
cd ..
python sample_path_rw.py

After path sampling, shuffle the resulting data './data/sample_path/sample_path.txt' and then split them into train.txt, dev.txt and test.txt by ratio of 0.9:0.05:0.05 under './data/sample_path/'

Then you can start to train the path generator by running

# the first arg is for specifying which gpu to use
./run.sh $gpu_device

The checkpoint of the path generator would be stored in './checkpoints/model.ckpt'. Move it to '../commonsense-qa/saved_models/pretrain_generator'. So far, we are done with training the generator.

Alternatively, you can also download our well-trained path generator checkpoint.

For training a commonsense qa system

1. Download Data

First, you need to download all the necessary data in order to train the model:

cd commonsense-qa
bash scripts/download.sh

2. Preprocess

To preprocess the data, run:

python preprocess.py

3. Using the path generator to connect question-answer entities

(Modify ./config/path_generate.config to specify the dataset and gpu device)

./scripts/run_generate.sh

4. Commonsense QA system training

bash scripts/run_main.sh ./config/csqa.config

Training process and final evaluation results would be stored in './saved_models/'

Owner
Peifeng Wang
Peifeng Wang
DECA: Detailed Expression Capture and Animation (SIGGRAPH 2021)

DECA: Detailed Expression Capture and Animation (SIGGRAPH2021) input image, aligned reconstruction, animation with various poses & expressions This is

Yao Feng 1.5k Jan 02, 2023
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 06, 2023
Attention-based Transformation from Latent Features to Point Clouds (AAAI 2022)

Attention-based Transformation from Latent Features to Point Clouds This repository contains a PyTorch implementation of the paper: Attention-based Tr

12 Nov 11, 2022
Object Detection using YOLO from PyImageSearch

Object Detection using YOLO from PyImageSearch By applying object detection, you’ll not only be able to determine what is in an image, but also where

Mohamed NIANG 1 Feb 09, 2022
Differentiable scientific computing library

xitorch: differentiable scientific computing library xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely

98 Dec 26, 2022
Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF)

Graph Convolutional Gated Recurrent Neural Network (GCGRNN) Improved from Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF

Lei Lin 21 Dec 18, 2022
Learning Open-World Object Proposals without Learning to Classify

Learning Open-World Object Proposals without Learning to Classify Pytorch implementation for "Learning Open-World Object Proposals without Learning to

Dahun Kim 149 Dec 22, 2022
This is a file about Unet implemented in Pytorch

Unet this is an implemetion of Unet in Pytorch and it's architecture is as follows which is the same with paper of Unet component of Unet Convolution

Dragon 1 Dec 03, 2021
Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser.

Hera Train/evaluate a Keras model, get metrics streamed to a dashboard in your browser. Setting up Step 1. Plant the spy Install the package pip

Keplr 495 Dec 10, 2022
Boston House Prediction Valuation Tool

Boston-House-Prediction-Valuation-Tool From Below Anlaysis The Valuation Tool is Designed Correlation Matrix Regrssion Analysis Between Target Vs Pred

0 Sep 09, 2022
Caffe models in TensorFlow

Caffe to TensorFlow Convert Caffe models to TensorFlow. Usage Run convert.py to convert an existing Caffe model to TensorFlow. Make sure you're using

Saumitro Dasgupta 2.8k Dec 31, 2022
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
A PyTorch implementation of SIN: Superpixel Interpolation Network

SIN: Superpixel Interpolation Network This is is a PyTorch implementation of the superpixel segmentation network introduced in our PRICAI-2021 paper:

6 Sep 28, 2022
Pytorch implementation of SimSiam Architecture

SimSiam-pytorch A simple pytorch implementation of Exploring Simple Siamese Representation Learning which is developed by Facebook AI Research (FAIR)

Saeed Shurrab 1 Oct 20, 2021
The official repository for BaMBNet

BaMBNet-Pytorch Paper

Junjun Jiang 18 Dec 04, 2022
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement."

FullSubNet This Git repository for the official PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech E

郝翔 357 Jan 04, 2023
Implements the training, testing and editing tools for "Pluralistic Image Completion"

Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "

Chuanxia Zheng 615 Dec 08, 2022
Model Quantization Benchmark

Introduction MQBench is an open-source model quantization toolkit based on PyTorch fx. The envision of MQBench is to provide: SOTA Algorithms. With MQ

500 Jan 06, 2023
Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling".

PSSL Source code of CIKM2021 Long Paper "PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling". It consists of the pre-tra

2 Dec 21, 2021